Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmul12 Structured version   Visualization version   GIF version

Theorem ofmul12 43386
Description: Function analogue of mul12 11383. (Contributed by Steve Rodriguez, 13-Nov-2015.)
Assertion
Ref Expression
ofmul12 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ (𝐹 ∘f Β· (𝐺 ∘f Β· 𝐻)) = (𝐺 ∘f Β· (𝐹 ∘f Β· 𝐻)))

Proof of Theorem ofmul12
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐴 ∈ 𝑉)
2 simplr 765 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐹:π΄βŸΆβ„‚)
32ffnd 6717 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐹 Fn 𝐴)
4 simprl 767 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐺:π΄βŸΆβ„‚)
54ffnd 6717 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐺 Fn 𝐴)
6 simprr 769 . . . 4 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐻:π΄βŸΆβ„‚)
76ffnd 6717 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ 𝐻 Fn 𝐴)
8 inidm 4217 . . 3 (𝐴 ∩ 𝐴) = 𝐴
95, 7, 1, 1, 8offn 7685 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ (𝐺 ∘f Β· 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7685 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ (𝐹 ∘f Β· 𝐻) Fn 𝐴)
115, 10, 1, 1, 8offn 7685 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ (𝐺 ∘f Β· (𝐹 ∘f Β· 𝐻)) Fn 𝐴)
12 eqidd 2731 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘₯))
13 eqidd 2731 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘₯))
14 eqidd 2731 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (π»β€˜π‘₯) = (π»β€˜π‘₯))
155, 7, 1, 1, 8, 13, 14ofval 7683 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐺 ∘f Β· 𝐻)β€˜π‘₯) = ((πΊβ€˜π‘₯) Β· (π»β€˜π‘₯)))
162ffvelcdmda 7085 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
174ffvelcdmda 7085 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (πΊβ€˜π‘₯) ∈ β„‚)
186ffvelcdmda 7085 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ (π»β€˜π‘₯) ∈ β„‚)
1916, 17, 18mul12d 11427 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) Β· ((πΊβ€˜π‘₯) Β· (π»β€˜π‘₯))) = ((πΊβ€˜π‘₯) Β· ((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯))))
203, 7, 1, 1, 8, 12, 14ofval 7683 . . . 4 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐹 ∘f Β· 𝐻)β€˜π‘₯) = ((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯)))
215, 10, 1, 1, 8, 13, 20ofval 7683 . . 3 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐺 ∘f Β· (𝐹 ∘f Β· 𝐻))β€˜π‘₯) = ((πΊβ€˜π‘₯) Β· ((πΉβ€˜π‘₯) Β· (π»β€˜π‘₯))))
2219, 21eqtr4d 2773 . 2 ((((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) Β· ((πΊβ€˜π‘₯) Β· (π»β€˜π‘₯))) = ((𝐺 ∘f Β· (𝐹 ∘f Β· 𝐻))β€˜π‘₯))
231, 3, 9, 11, 12, 15, 22offveq 7696 1 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ (𝐺:π΄βŸΆβ„‚ ∧ 𝐻:π΄βŸΆβ„‚)) β†’ (𝐹 ∘f Β· (𝐺 ∘f Β· 𝐻)) = (𝐺 ∘f Β· (𝐹 ∘f Β· 𝐻)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ∘f cof 7670  β„‚cc 11110   Β· cmul 11117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-mulcom 11176  ax-mulass 11178
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672
This theorem is referenced by:  expgrowth  43396
  Copyright terms: Public domain W3C validator