Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmul12 Structured version   Visualization version   GIF version

Theorem ofmul12 44321
Description: Function analogue of mul12 11346. (Contributed by Steve Rodriguez, 13-Nov-2015.)
Assertion
Ref Expression
ofmul12 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))

Proof of Theorem ofmul12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐴𝑉)
2 simplr 768 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹:𝐴⟶ℂ)
32ffnd 6692 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹 Fn 𝐴)
4 simprl 770 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺:𝐴⟶ℂ)
54ffnd 6692 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺 Fn 𝐴)
6 simprr 772 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻:𝐴⟶ℂ)
76ffnd 6692 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻 Fn 𝐴)
8 inidm 4193 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7669 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7669 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · 𝐻) Fn 𝐴)
115, 10, 1, 1, 8offn 7669 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · (𝐹f · 𝐻)) Fn 𝐴)
12 eqidd 2731 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2731 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
14 eqidd 2731 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
155, 7, 1, 1, 8, 13, 14ofval 7667 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
162ffvelcdmda 7059 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
174ffvelcdmda 7059 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
186ffvelcdmda 7059 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℂ)
1916, 17, 18mul12d 11390 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
203, 7, 1, 1, 8, 12, 14ofval 7667 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
215, 10, 1, 1, 8, 13, 20ofval 7667 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · (𝐹f · 𝐻))‘𝑥) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
2219, 21eqtr4d 2768 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺f · (𝐹f · 𝐻))‘𝑥))
231, 3, 9, 11, 12, 15, 22offveq 7682 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-mulcom 11139  ax-mulass 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by:  expgrowth  44331
  Copyright terms: Public domain W3C validator