Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmul12 Structured version   Visualization version   GIF version

Theorem ofmul12 44316
Description: Function analogue of mul12 11408. (Contributed by Steve Rodriguez, 13-Nov-2015.)
Assertion
Ref Expression
ofmul12 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))

Proof of Theorem ofmul12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐴𝑉)
2 simplr 768 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹:𝐴⟶ℂ)
32ffnd 6717 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹 Fn 𝐴)
4 simprl 770 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺:𝐴⟶ℂ)
54ffnd 6717 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺 Fn 𝐴)
6 simprr 772 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻:𝐴⟶ℂ)
76ffnd 6717 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻 Fn 𝐴)
8 inidm 4207 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7692 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7692 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · 𝐻) Fn 𝐴)
115, 10, 1, 1, 8offn 7692 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · (𝐹f · 𝐻)) Fn 𝐴)
12 eqidd 2735 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2735 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
14 eqidd 2735 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
155, 7, 1, 1, 8, 13, 14ofval 7690 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
162ffvelcdmda 7084 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
174ffvelcdmda 7084 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
186ffvelcdmda 7084 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℂ)
1916, 17, 18mul12d 11452 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
203, 7, 1, 1, 8, 12, 14ofval 7690 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
215, 10, 1, 1, 8, 13, 20ofval 7690 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · (𝐹f · 𝐻))‘𝑥) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
2219, 21eqtr4d 2772 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺f · (𝐹f · 𝐻))‘𝑥))
231, 3, 9, 11, 12, 15, 22offveq 7705 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135   · cmul 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-mulcom 11201  ax-mulass 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679
This theorem is referenced by:  expgrowth  44326
  Copyright terms: Public domain W3C validator