Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmul12 Structured version   Visualization version   GIF version

Theorem ofmul12 41981
Description: Function analogue of mul12 11186. (Contributed by Steve Rodriguez, 13-Nov-2015.)
Assertion
Ref Expression
ofmul12 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))

Proof of Theorem ofmul12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐴𝑉)
2 simplr 767 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹:𝐴⟶ℂ)
32ffnd 6631 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹 Fn 𝐴)
4 simprl 769 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺:𝐴⟶ℂ)
54ffnd 6631 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺 Fn 𝐴)
6 simprr 771 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻:𝐴⟶ℂ)
76ffnd 6631 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻 Fn 𝐴)
8 inidm 4158 . . 3 (𝐴𝐴) = 𝐴
95, 7, 1, 1, 8offn 7578 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · 𝐻) Fn 𝐴)
103, 7, 1, 1, 8offn 7578 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · 𝐻) Fn 𝐴)
115, 10, 1, 1, 8offn 7578 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺f · (𝐹f · 𝐻)) Fn 𝐴)
12 eqidd 2737 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2737 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
14 eqidd 2737 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
155, 7, 1, 1, 8, 13, 14ofval 7576 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
162ffvelcdmda 6993 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
174ffvelcdmda 6993 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
186ffvelcdmda 6993 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℂ)
1916, 17, 18mul12d 11230 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
203, 7, 1, 1, 8, 12, 14ofval 7576 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹f · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
215, 10, 1, 1, 8, 13, 20ofval 7576 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺f · (𝐹f · 𝐻))‘𝑥) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
2219, 21eqtr4d 2779 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺f · (𝐹f · 𝐻))‘𝑥))
231, 3, 9, 11, 12, 15, 22offveq 7589 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹f · (𝐺f · 𝐻)) = (𝐺f · (𝐹f · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  cc 10915   · cmul 10922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-mulcom 10981  ax-mulass 10983
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565
This theorem is referenced by:  expgrowth  41991
  Copyright terms: Public domain W3C validator