Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivrec Structured version   Visualization version   GIF version

Theorem ofdivrec 40678
Description: Function analogue of divrec 11314, a division analogue of ofnegsub 11636. (Contributed by Steve Rodriguez, 3-Nov-2015.)
Assertion
Ref Expression
ofdivrec ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹f / 𝐺))

Proof of Theorem ofdivrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴𝑉)
2 simp2 1133 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ)
32ffnd 6515 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴)
4 ax-1cn 10595 . . . 4 1 ∈ ℂ
5 fnconstg 6567 . . . 4 (1 ∈ ℂ → (𝐴 × {1}) Fn 𝐴)
64, 5mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐴 × {1}) Fn 𝐴)
7 simp3 1134 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0}))
87ffnd 6515 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴)
9 inidm 4195 . . 3 (𝐴𝐴) = 𝐴
106, 8, 1, 1, 9offn 7420 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐴 × {1}) ∘f / 𝐺) Fn 𝐴)
113, 8, 1, 1, 9offn 7420 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f / 𝐺) Fn 𝐴)
12 eqidd 2822 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 1cnd 10636 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 1 ∈ ℂ)
14 eqidd 2822 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
151, 13, 8, 14ofc1 7432 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (((𝐴 × {1}) ∘f / 𝐺)‘𝑥) = (1 / (𝐺𝑥)))
16 ffvelrn 6849 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
172, 16sylan 582 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
18 ffvelrn 6849 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
19 eldifsn 4719 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
2018, 19sylib 220 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
217, 20sylan 582 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
22 divrec 11314 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑥) · (1 / (𝐺𝑥))))
2322eqcomd 2827 . . . . 5 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
24233expb 1116 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0)) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
2517, 21, 24syl2anc 586 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
263, 8, 1, 1, 9, 12, 14ofval 7418 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹f / 𝐺)‘𝑥) = ((𝐹𝑥) / (𝐺𝑥)))
2725, 26eqtr4d 2859 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹f / 𝐺)‘𝑥))
281, 3, 10, 11, 12, 15, 27offveq 7430 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  {csn 4567   × cxp 5553   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537  1c1 10538   · cmul 10542   / cdiv 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator