Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofdivrec Structured version   Visualization version   GIF version

Theorem ofdivrec 44308
Description: Function analogue of divrec 11829, a division analogue of ofnegsub 12160. (Contributed by Steve Rodriguez, 3-Nov-2015.)
Assertion
Ref Expression
ofdivrec ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹f / 𝐺))

Proof of Theorem ofdivrec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐴𝑉)
2 simp2 1137 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹:𝐴⟶ℂ)
32ffnd 6671 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐹 Fn 𝐴)
4 ax-1cn 11102 . . . 4 1 ∈ ℂ
5 fnconstg 6730 . . . 4 (1 ∈ ℂ → (𝐴 × {1}) Fn 𝐴)
64, 5mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐴 × {1}) Fn 𝐴)
7 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺:𝐴⟶(ℂ ∖ {0}))
87ffnd 6671 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 𝐺 Fn 𝐴)
9 inidm 4186 . . 3 (𝐴𝐴) = 𝐴
106, 8, 1, 1, 9offn 7646 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐴 × {1}) ∘f / 𝐺) Fn 𝐴)
113, 8, 1, 1, 9offn 7646 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f / 𝐺) Fn 𝐴)
12 eqidd 2730 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
13 1cnd 11145 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → 1 ∈ ℂ)
14 eqidd 2730 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
151, 13, 8, 14ofc1 7661 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (((𝐴 × {1}) ∘f / 𝐺)‘𝑥) = (1 / (𝐺𝑥)))
16 ffvelcdm 7035 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
172, 16sylan 580 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
18 ffvelcdm 7035 . . . . . 6 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
19 eldifsn 4746 . . . . . 6 ((𝐺𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
2018, 19sylib 218 . . . . 5 ((𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
217, 20sylan 580 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0))
22 divrec 11829 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑥) · (1 / (𝐺𝑥))))
2322eqcomd 2735 . . . . 5 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
24233expb 1120 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ ((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑥) ≠ 0)) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
2517, 21, 24syl2anc 584 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹𝑥) / (𝐺𝑥)))
263, 8, 1, 1, 9, 12, 14ofval 7644 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹f / 𝐺)‘𝑥) = ((𝐹𝑥) / (𝐺𝑥)))
2725, 26eqtr4d 2767 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) ∧ 𝑥𝐴) → ((𝐹𝑥) · (1 / (𝐺𝑥))) = ((𝐹f / 𝐺)‘𝑥))
281, 3, 10, 11, 12, 15, 27offveq 7659 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹f / 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator