| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofres | Structured version Visualization version GIF version | ||
| Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| ofres.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofres.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| ofres.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofres.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofres.5 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| ofres | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘f 𝑅(𝐺 ↾ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofres.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | ofres.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | ofres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | ofres.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | ofres.5 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 6 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 7664 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | inss1 4202 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 10 | 5, 9 | eqsstrri 3996 | . . . 4 ⊢ 𝐶 ⊆ 𝐴 |
| 11 | fnssres 6643 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 12 | 1, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 13 | inss2 4203 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | 5, 13 | eqsstrri 3996 | . . . 4 ⊢ 𝐶 ⊆ 𝐵 |
| 15 | fnssres 6643 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐺 ↾ 𝐶) Fn 𝐶) | |
| 16 | 2, 14, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐶) Fn 𝐶) |
| 17 | ssexg 5280 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
| 18 | 10, 3, 17 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 19 | inidm 4192 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 20 | fvres 6879 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
| 22 | fvres 6879 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) | |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) |
| 24 | 12, 16, 18, 18, 19, 21, 23 | offval 7664 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∘f 𝑅(𝐺 ↾ 𝐶)) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 25 | 8, 24 | eqtr4d 2768 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘f 𝑅(𝐺 ↾ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ↦ cmpt 5190 ↾ cres 5642 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 |
| This theorem is referenced by: ofoafg 43336 |
| Copyright terms: Public domain | W3C validator |