MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofres Structured version   Visualization version   GIF version

Theorem ofres 7530
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1 (𝜑𝐹 Fn 𝐴)
ofres.2 (𝜑𝐺 Fn 𝐵)
ofres.3 (𝜑𝐴𝑉)
ofres.4 (𝜑𝐵𝑊)
ofres.5 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofres (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))

Proof of Theorem ofres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 ofres.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 ofres.3 . . 3 (𝜑𝐴𝑉)
4 ofres.4 . . 3 (𝜑𝐵𝑊)
5 ofres.5 . . 3 (𝐴𝐵) = 𝐶
6 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2739 . . 3 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7520 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
9 inss1 4159 . . . . 5 (𝐴𝐵) ⊆ 𝐴
105, 9eqsstrri 3952 . . . 4 𝐶𝐴
11 fnssres 6539 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) Fn 𝐶)
121, 10, 11sylancl 585 . . 3 (𝜑 → (𝐹𝐶) Fn 𝐶)
13 inss2 4160 . . . . 5 (𝐴𝐵) ⊆ 𝐵
145, 13eqsstrri 3952 . . . 4 𝐶𝐵
15 fnssres 6539 . . . 4 ((𝐺 Fn 𝐵𝐶𝐵) → (𝐺𝐶) Fn 𝐶)
162, 14, 15sylancl 585 . . 3 (𝜑 → (𝐺𝐶) Fn 𝐶)
17 ssexg 5242 . . . 4 ((𝐶𝐴𝐴𝑉) → 𝐶 ∈ V)
1810, 3, 17sylancr 586 . . 3 (𝜑𝐶 ∈ V)
19 inidm 4149 . . 3 (𝐶𝐶) = 𝐶
20 fvres 6775 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
2120adantl 481 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
22 fvres 6775 . . . 4 (𝑥𝐶 → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2322adantl 481 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2412, 16, 18, 18, 19, 21, 23offval 7520 . 2 (𝜑 → ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
258, 24eqtr4d 2781 1 (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  cmpt 5153  cres 5582   Fn wfn 6413  cfv 6418  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator