![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofres | Structured version Visualization version GIF version |
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
ofres.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofres.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
ofres.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofres.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofres.5 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
ofres | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofres.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofres.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | ofres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofres.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | ofres.5 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
6 | eqidd 2801 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2801 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | offval 7139 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
9 | inss1 4029 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
10 | 5, 9 | eqsstr3i 3833 | . . . 4 ⊢ 𝐶 ⊆ 𝐴 |
11 | fnssres 6216 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
12 | 1, 10, 11 | sylancl 581 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
13 | inss2 4030 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
14 | 5, 13 | eqsstr3i 3833 | . . . 4 ⊢ 𝐶 ⊆ 𝐵 |
15 | fnssres 6216 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐺 ↾ 𝐶) Fn 𝐶) | |
16 | 2, 14, 15 | sylancl 581 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐶) Fn 𝐶) |
17 | ssexg 5000 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
18 | 10, 3, 17 | sylancr 582 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
19 | inidm 4019 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
20 | fvres 6431 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
21 | 20 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
22 | fvres 6431 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) | |
23 | 22 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) |
24 | 12, 16, 18, 18, 19, 21, 23 | offval 7139 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶)) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
25 | 8, 24 | eqtr4d 2837 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ∩ cin 3769 ⊆ wss 3770 ↦ cmpt 4923 ↾ cres 5315 Fn wfn 6097 ‘cfv 6102 (class class class)co 6879 ∘𝑓 cof 7130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |