MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofres Structured version   Visualization version   GIF version

Theorem ofres 7683
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1 (𝜑𝐹 Fn 𝐴)
ofres.2 (𝜑𝐺 Fn 𝐵)
ofres.3 (𝜑𝐴𝑉)
ofres.4 (𝜑𝐵𝑊)
ofres.5 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofres (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))

Proof of Theorem ofres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 ofres.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 ofres.3 . . 3 (𝜑𝐴𝑉)
4 ofres.4 . . 3 (𝜑𝐵𝑊)
5 ofres.5 . . 3 (𝐴𝐵) = 𝐶
6 eqidd 2725 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2725 . . 3 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7673 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
9 inss1 4221 . . . . 5 (𝐴𝐵) ⊆ 𝐴
105, 9eqsstrri 4010 . . . 4 𝐶𝐴
11 fnssres 6664 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) Fn 𝐶)
121, 10, 11sylancl 585 . . 3 (𝜑 → (𝐹𝐶) Fn 𝐶)
13 inss2 4222 . . . . 5 (𝐴𝐵) ⊆ 𝐵
145, 13eqsstrri 4010 . . . 4 𝐶𝐵
15 fnssres 6664 . . . 4 ((𝐺 Fn 𝐵𝐶𝐵) → (𝐺𝐶) Fn 𝐶)
162, 14, 15sylancl 585 . . 3 (𝜑 → (𝐺𝐶) Fn 𝐶)
17 ssexg 5314 . . . 4 ((𝐶𝐴𝐴𝑉) → 𝐶 ∈ V)
1810, 3, 17sylancr 586 . . 3 (𝜑𝐶 ∈ V)
19 inidm 4211 . . 3 (𝐶𝐶) = 𝐶
20 fvres 6901 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
2120adantl 481 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
22 fvres 6901 . . . 4 (𝑥𝐶 → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2322adantl 481 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2412, 16, 18, 18, 19, 21, 23offval 7673 . 2 (𝜑 → ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
258, 24eqtr4d 2767 1 (𝜑 → (𝐹f 𝑅𝐺) = ((𝐹𝐶) ∘f 𝑅(𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cin 3940  wss 3941  cmpt 5222  cres 5669   Fn wfn 6529  cfv 6534  (class class class)co 7402  f cof 7662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664
This theorem is referenced by:  ofoafg  42653
  Copyright terms: Public domain W3C validator