![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofrval | Structured version Visualization version GIF version |
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
Ref | Expression |
---|---|
ofrval | ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | offval.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
6 | eqidd 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 7684 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
9 | 8 | biimpa 475 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥)) |
10 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
11 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
12 | 10, 11 | breq12d 5162 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
13 | 12 | rspccv 3610 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
14 | 9, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
15 | 14 | 3impia 1115 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋)𝑅(𝐺‘𝑋)) |
16 | simp1 1134 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝜑) | |
17 | inss1 4229 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
18 | 5, 17 | eqsstrri 4018 | . . . 4 ⊢ 𝑆 ⊆ 𝐴 |
19 | simp3 1136 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
20 | 18, 19 | sselid 3981 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐴) |
21 | ofval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
22 | 16, 20, 21 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
23 | inss2 4230 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
24 | 5, 23 | eqsstrri 4018 | . . . 4 ⊢ 𝑆 ⊆ 𝐵 |
25 | 24, 19 | sselid 3981 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
26 | ofval.7 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
27 | 16, 25, 26 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
28 | 15, 22, 27 | 3brtr3d 5180 | 1 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∩ cin 3948 class class class wbr 5149 Fn wfn 6539 ‘cfv 6544 ∘r cofr 7673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ofr 7675 |
This theorem is referenced by: mhpmulcl 21913 itg1le 25465 gsumle 32510 ftc1anclem5 36870 |
Copyright terms: Public domain | W3C validator |