| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofrval | Structured version Visualization version GIF version | ||
| Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| Ref | Expression |
|---|---|
| ofrval | ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 7620 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 9 | 8 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥)) |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 11 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 12 | 10, 11 | breq12d 5102 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 13 | 12 | rspccv 3569 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 14 | 9, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 15 | 14 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋)𝑅(𝐺‘𝑋)) |
| 16 | simp1 1136 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝜑) | |
| 17 | inss1 4184 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 18 | 5, 17 | eqsstrri 3977 | . . . 4 ⊢ 𝑆 ⊆ 𝐴 |
| 19 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 20 | 18, 19 | sselid 3927 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐴) |
| 21 | ofval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 16, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 23 | inss2 4185 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 3977 | . . . 4 ⊢ 𝑆 ⊆ 𝐵 |
| 25 | 24, 19 | sselid 3927 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 26 | ofval.7 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 16, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 28 | 15, 22, 27 | 3brtr3d 5120 | 1 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 class class class wbr 5089 Fn wfn 6476 ‘cfv 6481 ∘r cofr 7609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ofr 7611 |
| This theorem is referenced by: gsumle 20057 mhpmulcl 22064 itg1le 25641 ftc1anclem5 37747 |
| Copyright terms: Public domain | W3C validator |