Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofrval | Structured version Visualization version GIF version |
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
Ref | Expression |
---|---|
ofrval | ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | offval.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
6 | eqidd 2740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 7446 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
9 | 8 | biimpa 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥)) |
10 | fveq2 6686 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
11 | fveq2 6686 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
12 | 10, 11 | breq12d 5053 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
13 | 12 | rspccv 3526 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
14 | 9, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
15 | 14 | 3impia 1118 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋)𝑅(𝐺‘𝑋)) |
16 | simp1 1137 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝜑) | |
17 | inss1 4129 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
18 | 5, 17 | eqsstrri 3922 | . . . 4 ⊢ 𝑆 ⊆ 𝐴 |
19 | simp3 1139 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
20 | 18, 19 | sseldi 3885 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐴) |
21 | ofval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
22 | 16, 20, 21 | syl2anc 587 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
23 | inss2 4130 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
24 | 5, 23 | eqsstrri 3922 | . . . 4 ⊢ 𝑆 ⊆ 𝐵 |
25 | 24, 19 | sseldi 3885 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
26 | ofval.7 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
27 | 16, 25, 26 | syl2anc 587 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
28 | 15, 22, 27 | 3brtr3d 5071 | 1 ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∩ cin 3852 class class class wbr 5040 Fn wfn 6344 ‘cfv 6349 ∘r cofr 7436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ofr 7438 |
This theorem is referenced by: mhpmulcl 20955 itg1le 24478 gsumle 30939 ftc1anclem5 35509 |
Copyright terms: Public domain | W3C validator |