Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg1le | Structured version Visualization version GIF version |
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1le | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹 ∈ dom ∫1) | |
2 | 0ss 4336 | . . 3 ⊢ ∅ ⊆ ℝ | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → ∅ ⊆ ℝ) |
4 | ovol0 24706 | . . 3 ⊢ (vol*‘∅) = 0 | |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (vol*‘∅) = 0) |
6 | simp2 1137 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐺 ∈ dom ∫1) | |
7 | simpl 484 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
8 | i1ff 24889 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
9 | ffn 6630 | . . . . . . 7 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ) |
11 | simpr 486 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
12 | i1ff 24889 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
13 | ffn 6630 | . . . . . . 7 ⊢ (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ) | |
14 | 11, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ) |
15 | reex 11012 | . . . . . . 7 ⊢ ℝ ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ℝ ∈ V) |
17 | inidm 4158 | . . . . . 6 ⊢ (ℝ ∩ ℝ) = ℝ | |
18 | eqidd 2737 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
19 | eqidd 2737 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
20 | 10, 14, 16, 16, 17, 18, 19 | ofrval 7577 | . . . . 5 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
21 | 20 | 3exp 1119 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘r ≤ 𝐺 → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥)))) |
22 | 21 | 3impia 1117 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
23 | eldifi 4067 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ) | |
24 | 22, 23 | impel 507 | . 2 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
25 | 1, 3, 5, 6, 24 | itg1lea 24926 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∖ cdif 3889 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 dom cdm 5600 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 ∘r cofr 7564 ℝcr 10920 0cc0 10921 ≤ cle 11060 vol*covol 24675 ∫1citg1 24828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-disj 5047 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-oi 9317 df-dju 9707 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-xadd 12899 df-ioo 13133 df-ico 13135 df-icc 13136 df-fz 13290 df-fzo 13433 df-fl 13562 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-sum 15447 df-xmet 20639 df-met 20640 df-ovol 24677 df-vol 24678 df-mbf 24832 df-itg1 24833 |
This theorem is referenced by: itg2itg1 24950 itg2i1fseq2 24970 itg2addnclem 35876 ftc1anclem5 35902 |
Copyright terms: Public domain | W3C validator |