MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1le Structured version   Visualization version   GIF version

Theorem itg1le 24927
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itg1le ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (∫1𝐹) ≤ (∫1𝐺))

Proof of Theorem itg1le
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → 𝐹 ∈ dom ∫1)
2 0ss 4336 . . 3 ∅ ⊆ ℝ
32a1i 11 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → ∅ ⊆ ℝ)
4 ovol0 24706 . . 3 (vol*‘∅) = 0
54a1i 11 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (vol*‘∅) = 0)
6 simp2 1137 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → 𝐺 ∈ dom ∫1)
7 simpl 484 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
8 i1ff 24889 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
9 ffn 6630 . . . . . . 7 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
107, 8, 93syl 18 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ)
11 simpr 486 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
12 i1ff 24889 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
13 ffn 6630 . . . . . . 7 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
1411, 12, 133syl 18 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ)
15 reex 11012 . . . . . . 7 ℝ ∈ V
1615a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
17 inidm 4158 . . . . . 6 (ℝ ∩ ℝ) = ℝ
18 eqidd 2737 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2737 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = (𝐺𝑥))
2010, 14, 16, 16, 17, 18, 19ofrval 7577 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝐹r𝐺𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐺𝑥))
21203exp 1119 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹r𝐺 → (𝑥 ∈ ℝ → (𝐹𝑥) ≤ (𝐺𝑥))))
22213impia 1117 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (𝑥 ∈ ℝ → (𝐹𝑥) ≤ (𝐺𝑥)))
23 eldifi 4067 . . 3 (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ)
2422, 23impel 507 . 2 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹𝑥) ≤ (𝐺𝑥))
251, 3, 5, 6, 24itg1lea 24926 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (∫1𝐹) ≤ (∫1𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  cdif 3889  wss 3892  c0 4262   class class class wbr 5081  dom cdm 5600   Fn wfn 6453  wf 6454  cfv 6458  r cofr 7564  cr 10920  0cc0 10921  cle 11060  vol*covol 24675  1citg1 24828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999  ax-addf 11000
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-disj 5047  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-oi 9317  df-dju 9707  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-q 12739  df-rp 12781  df-xadd 12899  df-ioo 13133  df-ico 13135  df-icc 13136  df-fz 13290  df-fzo 13433  df-fl 13562  df-seq 13772  df-exp 13833  df-hash 14095  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-clim 15246  df-sum 15447  df-xmet 20639  df-met 20640  df-ovol 24677  df-vol 24678  df-mbf 24832  df-itg1 24833
This theorem is referenced by:  itg2itg1  24950  itg2i1fseq2  24970  itg2addnclem  35876  ftc1anclem5  35902
  Copyright terms: Public domain W3C validator