| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1le | Structured version Visualization version GIF version | ||
| Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg1le | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹 ∈ dom ∫1) | |
| 2 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ ℝ | |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → ∅ ⊆ ℝ) |
| 4 | ovol0 25444 | . . 3 ⊢ (vol*‘∅) = 0 | |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (vol*‘∅) = 0) |
| 6 | simp2 1137 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐺 ∈ dom ∫1) | |
| 7 | simpl 482 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
| 8 | i1ff 25627 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 9 | ffn 6705 | . . . . . . 7 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
| 12 | i1ff 25627 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
| 13 | ffn 6705 | . . . . . . 7 ⊢ (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ) |
| 15 | reex 11218 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ℝ ∈ V) |
| 17 | inidm 4202 | . . . . . 6 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 18 | eqidd 2736 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 19 | eqidd 2736 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 20 | 10, 14, 16, 16, 17, 18, 19 | ofrval 7681 | . . . . 5 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| 21 | 20 | 3exp 1119 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘r ≤ 𝐺 → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥)))) |
| 22 | 21 | 3impia 1117 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
| 23 | eldifi 4106 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ) | |
| 24 | 22, 23 | impel 505 | . 2 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| 25 | 1, 3, 5, 6, 24 | itg1lea 25663 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 dom cdm 5654 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 ∘r cofr 7668 ℝcr 11126 0cc0 11127 ≤ cle 11268 vol*covol 25413 ∫1citg1 25566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xadd 13127 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-xmet 21306 df-met 21307 df-ovol 25415 df-vol 25416 df-mbf 25570 df-itg1 25571 |
| This theorem is referenced by: itg2itg1 25687 itg2i1fseq2 25707 itg2addnclem 37641 ftc1anclem5 37667 |
| Copyright terms: Public domain | W3C validator |