MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1le Structured version   Visualization version   GIF version

Theorem itg1le 25630
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itg1le ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (∫1𝐹) ≤ (∫1𝐺))

Proof of Theorem itg1le
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → 𝐹 ∈ dom ∫1)
2 0ss 4353 . . 3 ∅ ⊆ ℝ
32a1i 11 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → ∅ ⊆ ℝ)
4 ovol0 25410 . . 3 (vol*‘∅) = 0
54a1i 11 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (vol*‘∅) = 0)
6 simp2 1137 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → 𝐺 ∈ dom ∫1)
7 simpl 482 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1)
8 i1ff 25593 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
9 ffn 6656 . . . . . . 7 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
107, 8, 93syl 18 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ)
11 simpr 484 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1)
12 i1ff 25593 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
13 ffn 6656 . . . . . . 7 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
1411, 12, 133syl 18 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ)
15 reex 11119 . . . . . . 7 ℝ ∈ V
1615a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
17 inidm 4180 . . . . . 6 (ℝ ∩ ℝ) = ℝ
18 eqidd 2730 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2730 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = (𝐺𝑥))
2010, 14, 16, 16, 17, 18, 19ofrval 7629 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝐹r𝐺𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐺𝑥))
21203exp 1119 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹r𝐺 → (𝑥 ∈ ℝ → (𝐹𝑥) ≤ (𝐺𝑥))))
22213impia 1117 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (𝑥 ∈ ℝ → (𝐹𝑥) ≤ (𝐺𝑥)))
23 eldifi 4084 . . 3 (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ)
2422, 23impel 505 . 2 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹𝑥) ≤ (𝐺𝑥))
251, 3, 5, 6, 24itg1lea 25629 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1𝐹r𝐺) → (∫1𝐹) ≤ (∫1𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  wss 3905  c0 4286   class class class wbr 5095  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  r cofr 7616  cr 11027  0cc0 11028  cle 11169  vol*covol 25379  1citg1 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537
This theorem is referenced by:  itg2itg1  25653  itg2i1fseq2  25673  itg2addnclem  37650  ftc1anclem5  37676
  Copyright terms: Public domain W3C validator