![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1le | Structured version Visualization version GIF version |
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1le | β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (β«1βπΉ) β€ (β«1βπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β πΉ β dom β«1) | |
2 | 0ss 4395 | . . 3 β’ β β β | |
3 | 2 | a1i 11 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β β β β) |
4 | ovol0 25001 | . . 3 β’ (vol*ββ ) = 0 | |
5 | 4 | a1i 11 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (vol*ββ ) = 0) |
6 | simp2 1137 | . 2 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β πΊ β dom β«1) | |
7 | simpl 483 | . . . . . . 7 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΉ β dom β«1) | |
8 | i1ff 25184 | . . . . . . 7 β’ (πΉ β dom β«1 β πΉ:ββΆβ) | |
9 | ffn 6714 | . . . . . . 7 β’ (πΉ:ββΆβ β πΉ Fn β) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . 6 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΉ Fn β) |
11 | simpr 485 | . . . . . . 7 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΊ β dom β«1) | |
12 | i1ff 25184 | . . . . . . 7 β’ (πΊ β dom β«1 β πΊ:ββΆβ) | |
13 | ffn 6714 | . . . . . . 7 β’ (πΊ:ββΆβ β πΊ Fn β) | |
14 | 11, 12, 13 | 3syl 18 | . . . . . 6 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β πΊ Fn β) |
15 | reex 11197 | . . . . . . 7 β’ β β V | |
16 | 15 | a1i 11 | . . . . . 6 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β β β V) |
17 | inidm 4217 | . . . . . 6 β’ (β β© β) = β | |
18 | eqidd 2733 | . . . . . 6 β’ (((πΉ β dom β«1 β§ πΊ β dom β«1) β§ π₯ β β) β (πΉβπ₯) = (πΉβπ₯)) | |
19 | eqidd 2733 | . . . . . 6 β’ (((πΉ β dom β«1 β§ πΊ β dom β«1) β§ π₯ β β) β (πΊβπ₯) = (πΊβπ₯)) | |
20 | 10, 14, 16, 16, 17, 18, 19 | ofrval 7678 | . . . . 5 β’ (((πΉ β dom β«1 β§ πΊ β dom β«1) β§ πΉ βr β€ πΊ β§ π₯ β β) β (πΉβπ₯) β€ (πΊβπ₯)) |
21 | 20 | 3exp 1119 | . . . 4 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1) β (πΉ βr β€ πΊ β (π₯ β β β (πΉβπ₯) β€ (πΊβπ₯)))) |
22 | 21 | 3impia 1117 | . . 3 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (π₯ β β β (πΉβπ₯) β€ (πΊβπ₯))) |
23 | eldifi 4125 | . . 3 β’ (π₯ β (β β β ) β π₯ β β) | |
24 | 22, 23 | impel 506 | . 2 β’ (((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β§ π₯ β (β β β )) β (πΉβπ₯) β€ (πΊβπ₯)) |
25 | 1, 3, 5, 6, 24 | itg1lea 25221 | 1 β’ ((πΉ β dom β«1 β§ πΊ β dom β«1 β§ πΉ βr β€ πΊ) β (β«1βπΉ) β€ (β«1βπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β cdif 3944 β wss 3947 β c0 4321 class class class wbr 5147 dom cdm 5675 Fn wfn 6535 βΆwf 6536 βcfv 6540 βr cofr 7665 βcr 11105 0cc0 11106 β€ cle 11245 vol*covol 24970 β«1citg1 25123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xadd 13089 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-xmet 20929 df-met 20930 df-ovol 24972 df-vol 24973 df-mbf 25127 df-itg1 25128 |
This theorem is referenced by: itg2itg1 25245 itg2i1fseq2 25265 itg2addnclem 36527 ftc1anclem5 36553 |
Copyright terms: Public domain | W3C validator |