![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1le | Structured version Visualization version GIF version |
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1le | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1172 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → 𝐹 ∈ dom ∫1) | |
2 | 0ss 4197 | . . 3 ⊢ ∅ ⊆ ℝ | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → ∅ ⊆ ℝ) |
4 | ovol0 23659 | . . 3 ⊢ (vol*‘∅) = 0 | |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → (vol*‘∅) = 0) |
6 | simp2 1173 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → 𝐺 ∈ dom ∫1) | |
7 | eldifi 3959 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ) | |
8 | simpl 476 | . . . . . . . 8 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
9 | i1ff 23842 | . . . . . . . 8 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
10 | ffn 6278 | . . . . . . . 8 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
11 | 8, 9, 10 | 3syl 18 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ) |
12 | simpr 479 | . . . . . . . 8 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
13 | i1ff 23842 | . . . . . . . 8 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
14 | ffn 6278 | . . . . . . . 8 ⊢ (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ) |
16 | reex 10343 | . . . . . . . 8 ⊢ ℝ ∈ V | |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ℝ ∈ V) |
18 | inidm 4047 | . . . . . . 7 ⊢ (ℝ ∩ ℝ) = ℝ | |
19 | eqidd 2826 | . . . . . . 7 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
20 | eqidd 2826 | . . . . . . 7 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
21 | 11, 15, 17, 17, 18, 19, 20 | ofrval 7167 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝐹 ∘𝑟 ≤ 𝐺 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
22 | 21 | 3exp 1154 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘𝑟 ≤ 𝐺 → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥)))) |
23 | 22 | 3impia 1151 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
24 | 23 | imp 397 | . . 3 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
25 | 7, 24 | sylan2 588 | . 2 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
26 | 1, 3, 5, 6, 25 | itg1lea 23878 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 Vcvv 3414 ∖ cdif 3795 ⊆ wss 3798 ∅c0 4144 class class class wbr 4873 dom cdm 5342 Fn wfn 6118 ⟶wf 6119 ‘cfv 6123 ∘𝑟 cofr 7156 ℝcr 10251 0cc0 10252 ≤ cle 10392 vol*covol 23628 ∫1citg1 23781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-disj 4842 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-ofr 7158 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-q 12072 df-rp 12113 df-xadd 12233 df-ioo 12467 df-ico 12469 df-icc 12470 df-fz 12620 df-fzo 12761 df-fl 12888 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-xmet 20099 df-met 20100 df-ovol 23630 df-vol 23631 df-mbf 23785 df-itg1 23786 |
This theorem is referenced by: itg2itg1 23902 itg2i1fseq2 23922 itg2addnclem 34004 ftc1anclem5 34032 |
Copyright terms: Public domain | W3C validator |