Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg1le | Structured version Visualization version GIF version |
Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itg1le | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹 ∈ dom ∫1) | |
2 | 0ss 4335 | . . 3 ⊢ ∅ ⊆ ℝ | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → ∅ ⊆ ℝ) |
4 | ovol0 24638 | . . 3 ⊢ (vol*‘∅) = 0 | |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (vol*‘∅) = 0) |
6 | simp2 1135 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → 𝐺 ∈ dom ∫1) | |
7 | simpl 482 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 ∈ dom ∫1) | |
8 | i1ff 24821 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
9 | ffn 6596 | . . . . . . 7 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐹 Fn ℝ) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 ∈ dom ∫1) | |
12 | i1ff 24821 | . . . . . . 7 ⊢ (𝐺 ∈ dom ∫1 → 𝐺:ℝ⟶ℝ) | |
13 | ffn 6596 | . . . . . . 7 ⊢ (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ) | |
14 | 11, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → 𝐺 Fn ℝ) |
15 | reex 10946 | . . . . . . 7 ⊢ ℝ ∈ V | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → ℝ ∈ V) |
17 | inidm 4157 | . . . . . 6 ⊢ (ℝ ∩ ℝ) = ℝ | |
18 | eqidd 2740 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
19 | eqidd 2740 | . . . . . 6 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
20 | 10, 14, 16, 16, 17, 18, 19 | ofrval 7536 | . . . . 5 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
21 | 20 | 3exp 1117 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘r ≤ 𝐺 → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥)))) |
22 | 21 | 3impia 1115 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (𝑥 ∈ ℝ → (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
23 | eldifi 4065 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ ∅) → 𝑥 ∈ ℝ) | |
24 | 22, 23 | impel 505 | . 2 ⊢ (((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) ∧ 𝑥 ∈ (ℝ ∖ ∅)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
25 | 1, 3, 5, 6, 24 | itg1lea 24858 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 dom cdm 5588 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 ∘r cofr 7523 ℝcr 10854 0cc0 10855 ≤ cle 10994 vol*covol 24607 ∫1citg1 24760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-disj 5044 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xadd 12831 df-ioo 13065 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-fl 13493 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-xmet 20571 df-met 20572 df-ovol 24609 df-vol 24610 df-mbf 24764 df-itg1 24765 |
This theorem is referenced by: itg2itg1 24882 itg2i1fseq2 24902 itg2addnclem 35807 ftc1anclem5 35833 |
Copyright terms: Public domain | W3C validator |