![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oeword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeord 8555 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | |
2 | oecan 8556 | . . . . 5 ⊢ ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) | |
3 | 2 | 3coml 1127 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) |
4 | 3 | bicomd 222 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
5 | 1, 4 | orbi12d 917 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
6 | onsseleq 6378 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | eldifi 4106 | . . . 4 ⊢ (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On) | |
9 | id 22 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)) | |
10 | oecl 8503 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) | |
11 | oecl 8503 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 619 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On)) |
13 | onsseleq 6378 | . . . . 5 ⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
15 | 8, 9, 14 | syl2anr 597 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
16 | 15 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
17 | 5, 7, 16 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∖ cdif 3925 ⊆ wss 3928 Oncon0 6337 (class class class)co 7377 2oc2o 8426 ↑o coe 8431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pr 5404 ax-un 7692 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-2o 8433 df-oadd 8436 df-omul 8437 df-oexp 8438 |
This theorem is referenced by: oewordi 8558 cantnftermord 41746 omabs2 41758 |
Copyright terms: Public domain | W3C validator |