![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oeword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeord 7936 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | |
2 | oecan 7937 | . . . . 5 ⊢ ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) | |
3 | 2 | 3coml 1163 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) |
4 | 3 | bicomd 215 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
5 | 1, 4 | orbi12d 949 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
6 | onsseleq 6005 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | 6 | 3adant3 1168 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | eldifi 3960 | . . . 4 ⊢ (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On) | |
9 | id 22 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)) | |
10 | oecl 7885 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) | |
11 | oecl 7885 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 614 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On)) |
13 | onsseleq 6005 | . . . . 5 ⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
15 | 8, 9, 14 | syl2anr 592 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
16 | 15 | 3impa 1142 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
17 | 5, 7, 16 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 880 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∖ cdif 3796 ⊆ wss 3799 Oncon0 5964 (class class class)co 6906 2oc2o 7821 ↑o coe 7826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-omul 7832 df-oexp 7833 |
This theorem is referenced by: oewordi 7939 |
Copyright terms: Public domain | W3C validator |