![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oeword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeord 8590 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | |
2 | oecan 8591 | . . . . 5 ⊢ ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) | |
3 | 2 | 3coml 1125 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) |
4 | 3 | bicomd 222 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
5 | 1, 4 | orbi12d 915 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
6 | onsseleq 6404 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | 6 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | eldifi 4125 | . . . 4 ⊢ (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On) | |
9 | id 22 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)) | |
10 | oecl 8539 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) | |
11 | oecl 8539 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 617 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On)) |
13 | onsseleq 6404 | . . . . 5 ⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
15 | 8, 9, 14 | syl2anr 595 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
16 | 15 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
17 | 5, 7, 16 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ⊆ wss 3947 Oncon0 6363 (class class class)co 7411 2oc2o 8462 ↑o coe 8467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-oexp 8474 |
This theorem is referenced by: oewordi 8593 cantnftermord 42372 omabs2 42384 |
Copyright terms: Public domain | W3C validator |