Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oeword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeord 8230 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | |
2 | oecan 8231 | . . . . 5 ⊢ ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) | |
3 | 2 | 3coml 1124 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) |
4 | 3 | bicomd 226 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
5 | 1, 4 | orbi12d 916 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
6 | onsseleq 6215 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | 6 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | eldifi 4034 | . . . 4 ⊢ (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On) | |
9 | id 22 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)) | |
10 | oecl 8178 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) | |
11 | oecl 8178 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 621 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On)) |
13 | onsseleq 6215 | . . . . 5 ⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
15 | 8, 9, 14 | syl2anr 599 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
16 | 15 | 3impa 1107 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
17 | 5, 7, 16 | 3bitr4d 314 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 ⊆ wss 3860 Oncon0 6174 (class class class)co 7156 2oc2o 8112 ↑o coe 8117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-oexp 8124 |
This theorem is referenced by: oewordi 8233 |
Copyright terms: Public domain | W3C validator |