MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeword Structured version   Visualization version   GIF version

Theorem oeword 8421
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeword ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))

Proof of Theorem oeword
StepHypRef Expression
1 oeord 8419 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
2 oecan 8420 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶o 𝐴) = (𝐶o 𝐵) ↔ 𝐴 = 𝐵))
323coml 1126 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) = (𝐶o 𝐵) ↔ 𝐴 = 𝐵))
43bicomd 222 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶o 𝐴) = (𝐶o 𝐵)))
51, 4orbi12d 916 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ∨ (𝐶o 𝐴) = (𝐶o 𝐵))))
6 onsseleq 6307 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
763adant3 1131 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
8 eldifi 4061 . . . 4 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
9 id 22 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On))
10 oecl 8367 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
11 oecl 8367 . . . . . 6 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶o 𝐵) ∈ On)
1210, 11anim12dan 619 . . . . 5 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶o 𝐴) ∈ On ∧ (𝐶o 𝐵) ∈ On))
13 onsseleq 6307 . . . . 5 (((𝐶o 𝐴) ∈ On ∧ (𝐶o 𝐵) ∈ On) → ((𝐶o 𝐴) ⊆ (𝐶o 𝐵) ↔ ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ∨ (𝐶o 𝐴) = (𝐶o 𝐵))))
1412, 13syl 17 . . . 4 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶o 𝐴) ⊆ (𝐶o 𝐵) ↔ ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ∨ (𝐶o 𝐴) = (𝐶o 𝐵))))
158, 9, 14syl2anr 597 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ⊆ (𝐶o 𝐵) ↔ ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ∨ (𝐶o 𝐴) = (𝐶o 𝐵))))
16153impa 1109 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ⊆ (𝐶o 𝐵) ↔ ((𝐶o 𝐴) ∈ (𝐶o 𝐵) ∨ (𝐶o 𝐴) = (𝐶o 𝐵))))
175, 7, 163bitr4d 311 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  wss 3887  Oncon0 6266  (class class class)co 7275  2oc2o 8291  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by:  oewordi  8422
  Copyright terms: Public domain W3C validator