Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oeword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
Ref | Expression |
---|---|
oeword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oeord 8381 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | |
2 | oecan 8382 | . . . . 5 ⊢ ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) | |
3 | 2 | 3coml 1125 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵) ↔ 𝐴 = 𝐵)) |
4 | 3 | bicomd 222 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 = 𝐵 ↔ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵))) |
5 | 1, 4 | orbi12d 915 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
6 | onsseleq 6292 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | 6 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | eldifi 4057 | . . . 4 ⊢ (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On) | |
9 | id 22 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ On ∧ 𝐵 ∈ On)) | |
10 | oecl 8329 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ↑o 𝐴) ∈ On) | |
11 | oecl 8329 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ↑o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 618 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On)) |
13 | onsseleq 6292 | . . . . 5 ⊢ (((𝐶 ↑o 𝐴) ∈ On ∧ (𝐶 ↑o 𝐵) ∈ On) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
15 | 8, 9, 14 | syl2anr 596 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
16 | 15 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵) ↔ ((𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵) ∨ (𝐶 ↑o 𝐴) = (𝐶 ↑o 𝐵)))) |
17 | 5, 7, 16 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 Oncon0 6251 (class class class)co 7255 2oc2o 8261 ↑o coe 8266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-oexp 8273 |
This theorem is referenced by: oewordi 8384 |
Copyright terms: Public domain | W3C validator |