| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ranval | Structured version Visualization version GIF version | ||
| Description: Value of the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| lanval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| lanval.s | ⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| lanval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| lanval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| ranval.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| ranval.o | ⊢ 𝑂 = (oppCat‘𝑅) |
| ranval.p | ⊢ 𝑃 = (oppCat‘𝑆) |
| Ref | Expression |
|---|---|
| ranval | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂UP𝑃)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lanval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 2 | lanval.s | . . 3 ⊢ 𝑆 = (𝐶 FuncCat 𝐸) | |
| 3 | lanval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | func1st2nd 48936 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 5 | 4 | funcrcl2 48937 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | 4 | funcrcl3 48938 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | lanval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) | |
| 8 | 7 | func1st2nd 48936 | . . . 4 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 9 | 8 | funcrcl3 48938 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 10 | ranval.o | . . 3 ⊢ 𝑂 = (oppCat‘𝑅) | |
| 11 | ranval.p | . . 3 ⊢ 𝑃 = (oppCat‘𝑆) | |
| 12 | 1, 2, 5, 6, 9, 10, 11 | ranfval 49352 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(〈𝐷, 𝐸〉 −∘F 𝑓))(𝑂UP𝑃)𝑥))) |
| 13 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 14 | 13 | oveq2d 7416 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = (〈𝐷, 𝐸〉 −∘F 𝐹)) |
| 15 | ranval.k | . . . . . . 7 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) | |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| 17 | 14, 16 | eqtrd 2769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = 〈𝐽, 𝐾〉) |
| 18 | 17 | fveq2d 6877 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (oppFunc‘(〈𝐷, 𝐸〉 −∘F 𝑓)) = (oppFunc‘〈𝐽, 𝐾〉)) |
| 19 | df-ov 7403 | . . . . . 6 ⊢ (𝐽oppFunc𝐾) = (oppFunc‘〈𝐽, 𝐾〉) | |
| 20 | 1, 9, 2, 3, 15 | prcoffunca2 49160 | . . . . . . 7 ⊢ (𝜑 → 𝐽(𝑅 Func 𝑆)𝐾) |
| 21 | oppfval 48952 | . . . . . . 7 ⊢ (𝐽(𝑅 Func 𝑆)𝐾 → (𝐽oppFunc𝐾) = 〈𝐽, tpos 𝐾〉) | |
| 22 | 20, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐽oppFunc𝐾) = 〈𝐽, tpos 𝐾〉) |
| 23 | 19, 22 | eqtr3id 2783 | . . . . 5 ⊢ (𝜑 → (oppFunc‘〈𝐽, 𝐾〉) = 〈𝐽, tpos 𝐾〉) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (oppFunc‘〈𝐽, 𝐾〉) = 〈𝐽, tpos 𝐾〉) |
| 25 | 18, 24 | eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (oppFunc‘(〈𝐷, 𝐸〉 −∘F 𝑓)) = 〈𝐽, tpos 𝐾〉) |
| 26 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 27 | 25, 26 | oveq12d 7418 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((oppFunc‘(〈𝐷, 𝐸〉 −∘F 𝑓))(𝑂UP𝑃)𝑥) = (〈𝐽, tpos 𝐾〉(𝑂UP𝑃)𝑋)) |
| 28 | ovexd 7435 | . 2 ⊢ (𝜑 → (〈𝐽, tpos 𝐾〉(𝑂UP𝑃)𝑋) ∈ V) | |
| 29 | 12, 27, 3, 7, 28 | ovmpod 7554 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂UP𝑃)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 tpos ctpos 8219 Catccat 17663 oppCatcoppc 17710 Func cfunc 17854 FuncCat cfuc 17945 oppFunccoppf 48950 UPcup 48974 −∘F cprcof 49147 Rancran 49344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-slot 17188 df-ndx 17200 df-base 17216 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-func 17858 df-cofu 17860 df-nat 17946 df-fuc 17947 df-xpc 18171 df-curf 18213 df-oppf 48951 df-swapf 49040 df-fuco 49091 df-prcof 49148 df-ran 49346 |
| This theorem is referenced by: relran 49360 isran 49364 ranval2 49366 |
| Copyright terms: Public domain | W3C validator |