![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvamulr | Structured version Visualization version GIF version |
Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
dvafmul.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafmul.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafmul.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvafmul.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafmul.f | ⊢ 𝐹 = (Scalar‘𝑈) |
dvafmul.p | ⊢ · = (.r‘𝐹) |
Ref | Expression |
---|---|
dvamulr | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafmul.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvafmul.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvafmul.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | dvafmul.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
5 | dvafmul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑈) | |
6 | dvafmul.p | . . . 4 ⊢ · = (.r‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | dvafmulr 37087 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))) |
8 | 7 | oveqd 6923 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅 · 𝑆) = (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆)) |
9 | coexg 7380 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑅 ∘ 𝑆) ∈ V) | |
10 | coeq1 5513 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑠) = (𝑅 ∘ 𝑠)) | |
11 | coeq2 5514 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑅 ∘ 𝑠) = (𝑅 ∘ 𝑆)) | |
12 | eqid 2826 | . . . 4 ⊢ (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠)) = (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠)) | |
13 | 10, 11, 12 | ovmpt2g 7056 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ (𝑅 ∘ 𝑆) ∈ V) → (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆) = (𝑅 ∘ 𝑆)) |
14 | 9, 13 | mpd3an3 1592 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆) = (𝑅 ∘ 𝑆)) |
15 | 8, 14 | sylan9eq 2882 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ∘ ccom 5347 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 .rcmulr 16307 Scalarcsca 16309 LHypclh 36060 LTrncltrn 36177 TEndoctendo 36828 DVecAcdveca 37078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-edring 36833 df-dveca 37079 |
This theorem is referenced by: dvalveclem 37101 |
Copyright terms: Public domain | W3C validator |