| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvamulr | Structured version Visualization version GIF version | ||
| Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| dvafmul.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvafmul.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvafmul.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvafmul.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvafmul.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| dvafmul.p | ⊢ · = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| dvamulr | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvafmul.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvafmul.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvafmul.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvafmul.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 5 | dvafmul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 6 | dvafmul.p | . . . 4 ⊢ · = (.r‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvafmulr 40990 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))) |
| 8 | 7 | oveqd 7366 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅 · 𝑆) = (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆)) |
| 9 | coexg 7862 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑅 ∘ 𝑆) ∈ V) | |
| 10 | coeq1 5800 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∘ 𝑠) = (𝑅 ∘ 𝑠)) | |
| 11 | coeq2 5801 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑅 ∘ 𝑠) = (𝑅 ∘ 𝑆)) | |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠)) = (𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠)) | |
| 13 | 10, 11, 12 | ovmpog 7508 | . . 3 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ (𝑅 ∘ 𝑆) ∈ V) → (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆) = (𝑅 ∘ 𝑆)) |
| 14 | 9, 13 | mpd3an3 1464 | . 2 ⊢ ((𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑅(𝑟 ∈ 𝐸, 𝑠 ∈ 𝐸 ↦ (𝑟 ∘ 𝑠))𝑆) = (𝑅 ∘ 𝑆)) |
| 15 | 8, 14 | sylan9eq 2784 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 · 𝑆) = (𝑅 ∘ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 .rcmulr 17162 Scalarcsca 17164 LHypclh 39963 LTrncltrn 40080 TEndoctendo 40731 DVecAcdveca 40981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-edring 40736 df-dveca 40982 |
| This theorem is referenced by: dvalveclem 41004 |
| Copyright terms: Public domain | W3C validator |