Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpov Structured version   Visualization version   GIF version

Theorem tgrpov 39619
Description: The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
tgrp.o + = (+g𝐺)
Assertion
Ref Expression
tgrpov ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋 + 𝑌) = (𝑋𝑌))

Proof of Theorem tgrpov
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 tgrpset.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tgrpset.g . . . . 5 𝐺 = ((TGrp‘𝐾)‘𝑊)
4 tgrp.o . . . . 5 + = (+g𝐺)
51, 2, 3, 4tgrpopr 39618 . . . 4 ((𝐾𝑉𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
653adant3 1133 . . 3 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
76oveqd 7426 . 2 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋 + 𝑌) = (𝑋(𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))𝑌))
8 simp3l 1202 . . 3 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → 𝑋𝑇)
9 simp3r 1203 . . 3 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → 𝑌𝑇)
10 coexg 7920 . . . 4 ((𝑋𝑇𝑌𝑇) → (𝑋𝑌) ∈ V)
11103ad2ant3 1136 . . 3 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝑌) ∈ V)
12 coeq1 5858 . . . 4 (𝑓 = 𝑋 → (𝑓𝑔) = (𝑋𝑔))
13 coeq2 5859 . . . 4 (𝑔 = 𝑌 → (𝑋𝑔) = (𝑋𝑌))
14 eqid 2733 . . . 4 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))
1512, 13, 14ovmpog 7567 . . 3 ((𝑋𝑇𝑌𝑇 ∧ (𝑋𝑌) ∈ V) → (𝑋(𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))𝑌) = (𝑋𝑌))
168, 9, 11, 15syl3anc 1372 . 2 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋(𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))𝑌) = (𝑋𝑌))
177, 16eqtrd 2773 1 ((𝐾𝑉𝑊𝐻 ∧ (𝑋𝑇𝑌𝑇)) → (𝑋 + 𝑌) = (𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  ccom 5681  cfv 6544  (class class class)co 7409  cmpo 7411  +gcplusg 17197  LHypclh 38855  LTrncltrn 38972  TGrpctgrp 39613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-tgrp 39614
This theorem is referenced by:  tgrpgrplem  39620  tgrpabl  39622
  Copyright terms: Public domain W3C validator