| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tgrpov | Structured version Visualization version GIF version | ||
| Description: The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013.) |
| Ref | Expression |
|---|---|
| tgrpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tgrpset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tgrpset.g | ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) |
| tgrp.o | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| tgrpov | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrpset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tgrpset.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | tgrpset.g | . . . . 5 ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) | |
| 4 | tgrp.o | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 5 | 1, 2, 3, 4 | tgrpopr 40749 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) |
| 6 | 5 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) |
| 7 | 6 | oveqd 7448 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋 + 𝑌) = (𝑋(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝑌)) |
| 8 | simp3l 1202 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → 𝑋 ∈ 𝑇) | |
| 9 | simp3r 1203 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → 𝑌 ∈ 𝑇) | |
| 10 | coexg 7951 | . . . 4 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇) → (𝑋 ∘ 𝑌) ∈ V) | |
| 11 | 10 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋 ∘ 𝑌) ∈ V) |
| 12 | coeq1 5868 | . . . 4 ⊢ (𝑓 = 𝑋 → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑔)) | |
| 13 | coeq2 5869 | . . . 4 ⊢ (𝑔 = 𝑌 → (𝑋 ∘ 𝑔) = (𝑋 ∘ 𝑌)) | |
| 14 | eqid 2737 | . . . 4 ⊢ (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) | |
| 15 | 12, 13, 14 | ovmpog 7592 | . . 3 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇 ∧ (𝑋 ∘ 𝑌) ∈ V) → (𝑋(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝑌) = (𝑋 ∘ 𝑌)) |
| 16 | 8, 9, 11, 15 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝑌) = (𝑋 ∘ 𝑌)) |
| 17 | 7, 16 | eqtrd 2777 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 +gcplusg 17297 LHypclh 39986 LTrncltrn 40103 TGrpctgrp 40744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-tgrp 40745 |
| This theorem is referenced by: tgrpgrplem 40751 tgrpabl 40753 |
| Copyright terms: Public domain | W3C validator |