MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motplusg Structured version   Visualization version   GIF version

Theorem motplusg 26903
Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motplusg.1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motplusg.2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motplusg (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Distinct variable group:   𝑓,𝐺,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝑃(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motplusg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motplusg.1 . 2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motplusg.2 . 2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
3 coexg 7776 . . 3 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹𝐻) ∈ V)
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐻) ∈ V)
5 coeq1 5766 . . 3 (𝑎 = 𝐹 → (𝑎𝑏) = (𝐹𝑏))
6 coeq2 5767 . . 3 (𝑏 = 𝐻 → (𝐹𝑏) = (𝐹𝐻))
7 ovex 7308 . . . . . 6 (𝐺Ismt𝐺) ∈ V
87, 7mpoex 7920 . . . . 5 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V
9 motgrp.i . . . . . 6 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
109grpplusg 16998 . . . . 5 ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼))
118, 10ax-mp 5 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼)
12 coeq1 5766 . . . . 5 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
13 coeq2 5767 . . . . 5 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
1412, 13cbvmpov 7370 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
1511, 14eqtr3i 2768 . . 3 (+g𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
165, 6, 15ovmpog 7432 . 2 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹𝐻) ∈ V) → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
171, 2, 4, 16syl3anc 1370 1 (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {cpr 4563  cop 4567  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  distcds 16971  Ismtcismt 26893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975
This theorem is referenced by:  motgrp  26904
  Copyright terms: Public domain W3C validator