MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motplusg Structured version   Visualization version   GIF version

Theorem motplusg 28565
Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motplusg.1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motplusg.2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motplusg (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Distinct variable group:   𝑓,𝐺,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝑃(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motplusg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motplusg.1 . 2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motplusg.2 . 2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
3 coexg 7952 . . 3 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹𝐻) ∈ V)
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐻) ∈ V)
5 coeq1 5871 . . 3 (𝑎 = 𝐹 → (𝑎𝑏) = (𝐹𝑏))
6 coeq2 5872 . . 3 (𝑏 = 𝐻 → (𝐹𝑏) = (𝐹𝐻))
7 ovex 7464 . . . . . 6 (𝐺Ismt𝐺) ∈ V
87, 7mpoex 8103 . . . . 5 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V
9 motgrp.i . . . . . 6 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
109grpplusg 17334 . . . . 5 ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼))
118, 10ax-mp 5 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼)
12 coeq1 5871 . . . . 5 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
13 coeq2 5872 . . . . 5 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
1412, 13cbvmpov 7528 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
1511, 14eqtr3i 2765 . . 3 (+g𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
165, 6, 15ovmpog 7592 . 2 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹𝐻) ∈ V) → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
171, 2, 4, 16syl3anc 1370 1 (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {cpr 4633  cop 4637  ccom 5693  cfv 6563  (class class class)co 7431  cmpo 7433  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  distcds 17307  Ismtcismt 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311
This theorem is referenced by:  motgrp  28566
  Copyright terms: Public domain W3C validator