MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motplusg Structured version   Visualization version   GIF version

Theorem motplusg 28515
Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motplusg.1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motplusg.2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motplusg (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Distinct variable group:   𝑓,𝐺,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝑃(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motplusg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motplusg.1 . 2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motplusg.2 . 2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
3 coexg 7854 . . 3 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹𝐻) ∈ V)
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹𝐻) ∈ V)
5 coeq1 5792 . . 3 (𝑎 = 𝐹 → (𝑎𝑏) = (𝐹𝑏))
6 coeq2 5793 . . 3 (𝑏 = 𝐻 → (𝐹𝑏) = (𝐹𝐻))
7 ovex 7374 . . . . . 6 (𝐺Ismt𝐺) ∈ V
87, 7mpoex 8006 . . . . 5 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V
9 motgrp.i . . . . . 6 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
109grpplusg 17189 . . . . 5 ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼))
118, 10ax-mp 5 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼)
12 coeq1 5792 . . . . 5 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
13 coeq2 5793 . . . . 5 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
1412, 13cbvmpov 7436 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
1511, 14eqtr3i 2756 . . 3 (+g𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
165, 6, 15ovmpog 7500 . 2 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹𝐻) ∈ V) → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
171, 2, 4, 16syl3anc 1373 1 (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4573  cop 4577  ccom 5615  cfv 6476  (class class class)co 7341  cmpo 7343  ndxcnx 17099  Basecbs 17115  +gcplusg 17156  distcds 17165  Ismtcismt 28505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169
This theorem is referenced by:  motgrp  28516
  Copyright terms: Public domain W3C validator