MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motplusg Structured version   Visualization version   GIF version

Theorem motplusg 25854
Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motplusg.1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motplusg.2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motplusg (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Distinct variable group:   𝑓,𝐺,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝑃(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motplusg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motplusg.1 . 2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motplusg.2 . 2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
3 coexg 7379 . . 3 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹𝐻) ∈ V)
41, 2, 3syl2anc 581 . 2 (𝜑 → (𝐹𝐻) ∈ V)
5 coeq1 5512 . . 3 (𝑎 = 𝐹 → (𝑎𝑏) = (𝐹𝑏))
6 coeq2 5513 . . 3 (𝑏 = 𝐻 → (𝐹𝑏) = (𝐹𝐻))
7 ovex 6937 . . . . . 6 (𝐺Ismt𝐺) ∈ V
87, 7mpt2ex 7510 . . . . 5 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V
9 motgrp.i . . . . . 6 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
109grpplusg 16351 . . . . 5 ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼))
118, 10ax-mp 5 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼)
12 coeq1 5512 . . . . 5 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
13 coeq2 5513 . . . . 5 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
1412, 13cbvmpt2v 6995 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
1511, 14eqtr3i 2851 . . 3 (+g𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
165, 6, 15ovmpt2g 7055 . 2 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹𝐻) ∈ V) → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
171, 2, 4, 16syl3anc 1496 1 (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  Vcvv 3414  {cpr 4399  cop 4403  ccom 5346  cfv 6123  (class class class)co 6905  cmpt2 6907  ndxcnx 16219  Basecbs 16222  +gcplusg 16305  distcds 16314  Ismtcismt 25844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318
This theorem is referenced by:  motgrp  25855
  Copyright terms: Public domain W3C validator