![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > motplusg | Structured version Visualization version GIF version |
Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
motgrp.i | ⊢ 𝐼 = {〈(Base‘ndx), (𝐺Ismt𝐺)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} |
motplusg.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
motplusg.2 | ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
motplusg | ⊢ (𝜑 → (𝐹(+g‘𝐼)𝐻) = (𝐹 ∘ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motplusg.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
2 | motplusg.2 | . 2 ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | |
3 | coexg 7379 | . . 3 ⊢ ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹 ∘ 𝐻) ∈ V) | |
4 | 1, 2, 3 | syl2anc 581 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ V) |
5 | coeq1 5512 | . . 3 ⊢ (𝑎 = 𝐹 → (𝑎 ∘ 𝑏) = (𝐹 ∘ 𝑏)) | |
6 | coeq2 5513 | . . 3 ⊢ (𝑏 = 𝐻 → (𝐹 ∘ 𝑏) = (𝐹 ∘ 𝐻)) | |
7 | ovex 6937 | . . . . . 6 ⊢ (𝐺Ismt𝐺) ∈ V | |
8 | 7, 7 | mpt2ex 7510 | . . . . 5 ⊢ (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔)) ∈ V |
9 | motgrp.i | . . . . . 6 ⊢ 𝐼 = {〈(Base‘ndx), (𝐺Ismt𝐺)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} | |
10 | 9 | grpplusg 16351 | . . . . 5 ⊢ ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐼)) |
11 | 8, 10 | ax-mp 5 | . . . 4 ⊢ (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐼) |
12 | coeq1 5512 | . . . . 5 ⊢ (𝑓 = 𝑎 → (𝑓 ∘ 𝑔) = (𝑎 ∘ 𝑔)) | |
13 | coeq2 5513 | . . . . 5 ⊢ (𝑔 = 𝑏 → (𝑎 ∘ 𝑔) = (𝑎 ∘ 𝑏)) | |
14 | 12, 13 | cbvmpt2v 6995 | . . . 4 ⊢ (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎 ∘ 𝑏)) |
15 | 11, 14 | eqtr3i 2851 | . . 3 ⊢ (+g‘𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎 ∘ 𝑏)) |
16 | 5, 6, 15 | ovmpt2g 7055 | . 2 ⊢ ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹 ∘ 𝐻) ∈ V) → (𝐹(+g‘𝐼)𝐻) = (𝐹 ∘ 𝐻)) |
17 | 1, 2, 4, 16 | syl3anc 1496 | 1 ⊢ (𝜑 → (𝐹(+g‘𝐼)𝐻) = (𝐹 ∘ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3414 {cpr 4399 〈cop 4403 ∘ ccom 5346 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 ndxcnx 16219 Basecbs 16222 +gcplusg 16305 distcds 16314 Ismtcismt 25844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-plusg 16318 |
This theorem is referenced by: motgrp 25855 |
Copyright terms: Public domain | W3C validator |