Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  motplusg Structured version   Visualization version   GIF version

Theorem motplusg 26339
 Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motplusg.1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motplusg.2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motplusg (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
Distinct variable group:   𝑓,𝐺,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝑃(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝐼(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motplusg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motplusg.1 . 2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motplusg.2 . 2 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
3 coexg 7620 . . 3 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺)) → (𝐹𝐻) ∈ V)
41, 2, 3syl2anc 587 . 2 (𝜑 → (𝐹𝐻) ∈ V)
5 coeq1 5696 . . 3 (𝑎 = 𝐹 → (𝑎𝑏) = (𝐹𝑏))
6 coeq2 5697 . . 3 (𝑏 = 𝐻 → (𝐹𝑏) = (𝐹𝐻))
7 ovex 7172 . . . . . 6 (𝐺Ismt𝐺) ∈ V
87, 7mpoex 7764 . . . . 5 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V
9 motgrp.i . . . . . 6 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
109grpplusg 16606 . . . . 5 ((𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼))
118, 10ax-mp 5 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (+g𝐼)
12 coeq1 5696 . . . . 5 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
13 coeq2 5697 . . . . 5 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
1412, 13cbvmpov 7232 . . . 4 (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔)) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
1511, 14eqtr3i 2826 . . 3 (+g𝐼) = (𝑎 ∈ (𝐺Ismt𝐺), 𝑏 ∈ (𝐺Ismt𝐺) ↦ (𝑎𝑏))
165, 6, 15ovmpog 7292 . 2 ((𝐹 ∈ (𝐺Ismt𝐺) ∧ 𝐻 ∈ (𝐺Ismt𝐺) ∧ (𝐹𝐻) ∈ V) → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
171, 2, 4, 16syl3anc 1368 1 (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  Vcvv 3444  {cpr 4530  ⟨cop 4534   ∘ ccom 5527  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ndxcnx 16475  Basecbs 16478  +gcplusg 16560  distcds 16569  Ismtcismt 26329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573 This theorem is referenced by:  motgrp  26340
 Copyright terms: Public domain W3C validator