Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhval Structured version   Visualization version   GIF version

Theorem djhval 39391
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHyp‘𝐾)
djhval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhval.v 𝑉 = (Base‘𝑈)
djhval.o = ((ocH‘𝐾)‘𝑊)
djhval.j = ((joinH‘𝐾)‘𝑊)
Assertion
Ref Expression
djhval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djhval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djhval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djhval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 djhval.v . . . . 5 𝑉 = (Base‘𝑈)
4 djhval.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
5 djhval.j . . . . 5 = ((joinH‘𝐾)‘𝑊)
61, 2, 3, 4, 5djhfval 39390 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7285 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
93fvexi 6782 . . . . . 6 𝑉 ∈ V
109elpw2 5272 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1110biimpri 227 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1211ad2antrl 724 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑋 ∈ 𝒫 𝑉)
139elpw2 5272 . . . . 5 (𝑌 ∈ 𝒫 𝑉𝑌𝑉)
1413biimpri 227 . . . 4 (𝑌𝑉𝑌 ∈ 𝒫 𝑉)
1514ad2antll 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑌 ∈ 𝒫 𝑉)
16 fvexd 6783 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6768 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4150 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6772 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6768 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4151 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6772 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2739 . . . 4 (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7423 . . 3 ((𝑋 ∈ 𝒫 𝑉𝑌 ∈ 𝒫 𝑉 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2779 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  wss 3891  𝒫 cpw 4538  cfv 6430  (class class class)co 7268  cmpo 7270  Basecbs 16893  HLchlt 37343  LHypclh 37977  DVecHcdvh 39071  ocHcoch 39340  joinHcdjh 39387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-djh 39388
This theorem is referenced by:  djhval2  39392  djhcl  39393  djhlj  39394  djhexmid  39404
  Copyright terms: Public domain W3C validator