Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhval Structured version   Visualization version   GIF version

Theorem djhval 39612
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHyp‘𝐾)
djhval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhval.v 𝑉 = (Base‘𝑈)
djhval.o = ((ocH‘𝐾)‘𝑊)
djhval.j = ((joinH‘𝐾)‘𝑊)
Assertion
Ref Expression
djhval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djhval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djhval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djhval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 djhval.v . . . . 5 𝑉 = (Base‘𝑈)
4 djhval.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
5 djhval.j . . . . 5 = ((joinH‘𝐾)‘𝑊)
61, 2, 3, 4, 5djhfval 39611 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7324 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
93fvexi 6818 . . . . . 6 𝑉 ∈ V
109elpw2 5278 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1110biimpri 227 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1211ad2antrl 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑋 ∈ 𝒫 𝑉)
139elpw2 5278 . . . . 5 (𝑌 ∈ 𝒫 𝑉𝑌𝑉)
1413biimpri 227 . . . 4 (𝑌𝑉𝑌 ∈ 𝒫 𝑉)
1514ad2antll 727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑌 ∈ 𝒫 𝑉)
16 fvexd 6819 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6804 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4151 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6808 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6804 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4152 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6808 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2736 . . . 4 (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7464 . . 3 ((𝑋 ∈ 𝒫 𝑉𝑌 ∈ 𝒫 𝑉 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2776 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cin 3891  wss 3892  𝒫 cpw 4539  cfv 6458  (class class class)co 7307  cmpo 7309  Basecbs 16961  HLchlt 37564  LHypclh 38198  DVecHcdvh 39292  ocHcoch 39561  joinHcdjh 39608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-djh 39609
This theorem is referenced by:  djhval2  39613  djhcl  39614  djhlj  39615  djhexmid  39625
  Copyright terms: Public domain W3C validator