Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhval Structured version   Visualization version   GIF version

Theorem djhval 40733
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHypβ€˜πΎ)
djhval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
djhval.v 𝑉 = (Baseβ€˜π‘ˆ)
djhval.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
djhval.j ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
djhval (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋 ∨ π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))

Proof of Theorem djhval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djhval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
2 djhval.u . . . . 5 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 djhval.v . . . . 5 𝑉 = (Baseβ€˜π‘ˆ)
4 djhval.o . . . . 5 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
5 djhval.j . . . . 5 ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5djhfval 40732 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ∨ = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
76adantr 480 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ ∨ = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
87oveqd 7429 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋 ∨ π‘Œ) = (𝑋(π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ))
93fvexi 6905 . . . . . 6 𝑉 ∈ V
109elpw2 5345 . . . . 5 (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 βŠ† 𝑉)
1110biimpri 227 . . . 4 (𝑋 βŠ† 𝑉 β†’ 𝑋 ∈ 𝒫 𝑉)
1211ad2antrl 725 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ 𝑋 ∈ 𝒫 𝑉)
139elpw2 5345 . . . . 5 (π‘Œ ∈ 𝒫 𝑉 ↔ π‘Œ βŠ† 𝑉)
1413biimpri 227 . . . 4 (π‘Œ βŠ† 𝑉 β†’ π‘Œ ∈ 𝒫 𝑉)
1514ad2antll 726 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ π‘Œ ∈ 𝒫 𝑉)
16 fvexd 6906 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∈ V)
17 fveq2 6891 . . . . . 6 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜π‘₯) = ( βŠ₯ β€˜π‘‹))
1817ineq1d 4211 . . . . 5 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦)))
1918fveq2d 6895 . . . 4 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦))))
20 fveq2 6891 . . . . . 6 (𝑦 = π‘Œ β†’ ( βŠ₯ β€˜π‘¦) = ( βŠ₯ β€˜π‘Œ))
2120ineq2d 4212 . . . . 5 (𝑦 = π‘Œ β†’ (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)))
2221fveq2d 6895 . . . 4 (𝑦 = π‘Œ β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
23 eqid 2731 . . . 4 (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))) = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))
2419, 22, 23ovmpog 7570 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ π‘Œ ∈ 𝒫 𝑉 ∧ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∈ V) β†’ (𝑋(π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
2512, 15, 16, 24syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋(π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
268, 25eqtrd 2771 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋 ∨ π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  Basecbs 17151  HLchlt 38684  LHypclh 39319  DVecHcdvh 40413  ocHcoch 40682  joinHcdjh 40729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-djh 40730
This theorem is referenced by:  djhval2  40734  djhcl  40735  djhlj  40736  djhexmid  40746
  Copyright terms: Public domain W3C validator