Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhval Structured version   Visualization version   GIF version

Theorem djhval 41377
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHyp‘𝐾)
djhval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhval.v 𝑉 = (Base‘𝑈)
djhval.o = ((ocH‘𝐾)‘𝑊)
djhval.j = ((joinH‘𝐾)‘𝑊)
Assertion
Ref Expression
djhval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djhval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djhval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djhval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 djhval.v . . . . 5 𝑉 = (Base‘𝑈)
4 djhval.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
5 djhval.j . . . . 5 = ((joinH‘𝐾)‘𝑊)
61, 2, 3, 4, 5djhfval 41376 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7366 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
93fvexi 6836 . . . . . 6 𝑉 ∈ V
109elpw2 5273 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1110biimpri 228 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1211ad2antrl 728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑋 ∈ 𝒫 𝑉)
139elpw2 5273 . . . . 5 (𝑌 ∈ 𝒫 𝑉𝑌𝑉)
1413biimpri 228 . . . 4 (𝑌𝑉𝑌 ∈ 𝒫 𝑉)
1514ad2antll 729 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → 𝑌 ∈ 𝒫 𝑉)
16 fvexd 6837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6822 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4170 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6826 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6822 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4171 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6826 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2729 . . . 4 (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7508 . . 3 ((𝑋 ∈ 𝒫 𝑉𝑌 ∈ 𝒫 𝑉 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  𝒫 cpw 4551  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  HLchlt 39329  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326  joinHcdjh 41373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-djh 41374
This theorem is referenced by:  djhval2  41378  djhcl  41379  djhlj  41380  djhexmid  41390
  Copyright terms: Public domain W3C validator