Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   GIF version

Theorem djavalN 40006
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHypβ€˜πΎ)
djaval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
djaval.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
djaval.n βŠ₯ = ((ocAβ€˜πΎ)β€˜π‘Š)
djaval.j 𝐽 = ((vAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
djavalN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ (π‘‹π½π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))

Proof of Theorem djavalN
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
2 djaval.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 djaval.i . . . . 5 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
4 djaval.n . . . . 5 βŠ₯ = ((ocAβ€˜πΎ)β€˜π‘Š)
5 djaval.j . . . . 5 𝐽 = ((vAβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5djafvalN 40005 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐽 = (π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
76adantr 482 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ 𝐽 = (π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
87oveqd 7426 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ (π‘‹π½π‘Œ) = (𝑋(π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ))
92fvexi 6906 . . . . . 6 𝑇 ∈ V
109elpw2 5346 . . . . 5 (𝑋 ∈ 𝒫 𝑇 ↔ 𝑋 βŠ† 𝑇)
1110biimpri 227 . . . 4 (𝑋 βŠ† 𝑇 β†’ 𝑋 ∈ 𝒫 𝑇)
1211ad2antrl 727 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ 𝑋 ∈ 𝒫 𝑇)
139elpw2 5346 . . . . 5 (π‘Œ ∈ 𝒫 𝑇 ↔ π‘Œ βŠ† 𝑇)
1413biimpri 227 . . . 4 (π‘Œ βŠ† 𝑇 β†’ π‘Œ ∈ 𝒫 𝑇)
1514ad2antll 728 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ π‘Œ ∈ 𝒫 𝑇)
16 fvexd 6907 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∈ V)
17 fveq2 6892 . . . . . 6 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜π‘₯) = ( βŠ₯ β€˜π‘‹))
1817ineq1d 4212 . . . . 5 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦)))
1918fveq2d 6896 . . . 4 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦))))
20 fveq2 6892 . . . . . 6 (𝑦 = π‘Œ β†’ ( βŠ₯ β€˜π‘¦) = ( βŠ₯ β€˜π‘Œ))
2120ineq2d 4213 . . . . 5 (𝑦 = π‘Œ β†’ (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)))
2221fveq2d 6896 . . . 4 (𝑦 = π‘Œ β†’ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘¦))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
23 eqid 2733 . . . 4 (π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))) = (π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))
2419, 22, 23ovmpog 7567 . . 3 ((𝑋 ∈ 𝒫 𝑇 ∧ π‘Œ ∈ 𝒫 𝑇 ∧ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∈ V) β†’ (𝑋(π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
2512, 15, 16, 24syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ (𝑋(π‘₯ ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
268, 25eqtrd 2773 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑇 ∧ π‘Œ βŠ† 𝑇)) β†’ (π‘‹π½π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  DIsoAcdia 39899  ocAcocaN 39990  vAcdjaN 40002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-djaN 40003
This theorem is referenced by:  djaclN  40007  djajN  40008
  Copyright terms: Public domain W3C validator