Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   GIF version

Theorem djavalN 41118
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djavalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djavalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 djaval.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
5 djaval.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djafvalN 41117 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7448 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
92fvexi 6921 . . . . . 6 𝑇 ∈ V
109elpw2 5340 . . . . 5 (𝑋 ∈ 𝒫 𝑇𝑋𝑇)
1110biimpri 228 . . . 4 (𝑋𝑇𝑋 ∈ 𝒫 𝑇)
1211ad2antrl 728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑋 ∈ 𝒫 𝑇)
139elpw2 5340 . . . . 5 (𝑌 ∈ 𝒫 𝑇𝑌𝑇)
1413biimpri 228 . . . 4 (𝑌𝑇𝑌 ∈ 𝒫 𝑇)
1514ad2antll 729 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑌 ∈ 𝒫 𝑇)
16 fvexd 6922 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6907 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4227 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6911 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6907 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4228 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6911 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2735 . . . 4 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7592 . . 3 ((𝑋 ∈ 𝒫 𝑇𝑌 ∈ 𝒫 𝑇 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2775 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605  cfv 6563  (class class class)co 7431  cmpo 7433  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  DIsoAcdia 41011  ocAcocaN 41102  vAcdjaN 41114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-djaN 41115
This theorem is referenced by:  djaclN  41119  djajN  41120
  Copyright terms: Public domain W3C validator