Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   GIF version

Theorem djavalN 39076
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djavalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djavalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 djaval.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
5 djaval.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djafvalN 39075 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7272 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
92fvexi 6770 . . . . . 6 𝑇 ∈ V
109elpw2 5264 . . . . 5 (𝑋 ∈ 𝒫 𝑇𝑋𝑇)
1110biimpri 227 . . . 4 (𝑋𝑇𝑋 ∈ 𝒫 𝑇)
1211ad2antrl 724 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑋 ∈ 𝒫 𝑇)
139elpw2 5264 . . . . 5 (𝑌 ∈ 𝒫 𝑇𝑌𝑇)
1413biimpri 227 . . . 4 (𝑌𝑇𝑌 ∈ 𝒫 𝑇)
1514ad2antll 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑌 ∈ 𝒫 𝑇)
16 fvexd 6771 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6756 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4142 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6760 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6756 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4143 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6760 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7410 . . 3 ((𝑋 ∈ 𝒫 𝑇𝑌 ∈ 𝒫 𝑇 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  cmpo 7257  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  DIsoAcdia 38969  ocAcocaN 39060  vAcdjaN 39072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-djaN 39073
This theorem is referenced by:  djaclN  39077  djajN  39078
  Copyright terms: Public domain W3C validator