Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   GIF version

Theorem djavalN 38761
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djavalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djavalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 djaval.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
5 djaval.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djafvalN 38760 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7181 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
92fvexi 6682 . . . . . 6 𝑇 ∈ V
109elpw2 5210 . . . . 5 (𝑋 ∈ 𝒫 𝑇𝑋𝑇)
1110biimpri 231 . . . 4 (𝑋𝑇𝑋 ∈ 𝒫 𝑇)
1211ad2antrl 728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑋 ∈ 𝒫 𝑇)
139elpw2 5210 . . . . 5 (𝑌 ∈ 𝒫 𝑇𝑌𝑇)
1413biimpri 231 . . . 4 (𝑌𝑇𝑌 ∈ 𝒫 𝑇)
1514ad2antll 729 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑌 ∈ 𝒫 𝑇)
16 fvexd 6683 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6668 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4100 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6672 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6668 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4101 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6672 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7318 . . 3 ((𝑋 ∈ 𝒫 𝑇𝑌 ∈ 𝒫 𝑇 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2773 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  cin 3840  wss 3841  𝒫 cpw 4485  cfv 6333  (class class class)co 7164  cmpo 7166  HLchlt 36976  LHypclh 37610  LTrncltrn 37727  DIsoAcdia 38654  ocAcocaN 38745  vAcdjaN 38757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-djaN 38758
This theorem is referenced by:  djaclN  38762  djajN  38763
  Copyright terms: Public domain W3C validator