Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djavalN Structured version   Visualization version   GIF version

Theorem djavalN 39149
Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djavalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))

Proof of Theorem djavalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 djaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 djaval.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
5 djaval.j . . . . 5 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djafvalN 39148 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
76adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
87oveqd 7292 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌))
92fvexi 6788 . . . . . 6 𝑇 ∈ V
109elpw2 5269 . . . . 5 (𝑋 ∈ 𝒫 𝑇𝑋𝑇)
1110biimpri 227 . . . 4 (𝑋𝑇𝑋 ∈ 𝒫 𝑇)
1211ad2antrl 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑋 ∈ 𝒫 𝑇)
139elpw2 5269 . . . . 5 (𝑌 ∈ 𝒫 𝑇𝑌𝑇)
1413biimpri 227 . . . 4 (𝑌𝑇𝑌 ∈ 𝒫 𝑇)
1514ad2antll 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → 𝑌 ∈ 𝒫 𝑇)
16 fvexd 6789 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V)
17 fveq2 6774 . . . . . 6 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1817ineq1d 4145 . . . . 5 (𝑥 = 𝑋 → (( 𝑥) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑦)))
1918fveq2d 6778 . . . 4 (𝑥 = 𝑋 → ( ‘(( 𝑥) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑦))))
20 fveq2 6774 . . . . . 6 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2120ineq2d 4146 . . . . 5 (𝑦 = 𝑌 → (( 𝑋) ∩ ( 𝑦)) = (( 𝑋) ∩ ( 𝑌)))
2221fveq2d 6778 . . . 4 (𝑦 = 𝑌 → ( ‘(( 𝑋) ∩ ( 𝑦))) = ( ‘(( 𝑋) ∩ ( 𝑌))))
23 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))
2419, 22, 23ovmpog 7432 . . 3 ((𝑋 ∈ 𝒫 𝑇𝑌 ∈ 𝒫 𝑇 ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ∈ V) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
2512, 15, 16, 24syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋(𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦))))𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
268, 25eqtrd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = ( ‘(( 𝑋) ∩ ( 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  cmpo 7277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  DIsoAcdia 39042  ocAcocaN 39133  vAcdjaN 39145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-djaN 39146
This theorem is referenced by:  djaclN  39150  djajN  39151
  Copyright terms: Public domain W3C validator