Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvavadd | Structured version Visualization version GIF version |
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
dvafvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafvadd.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafvadd.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafvadd.v | ⊢ + = (+g‘𝑈) |
Ref | Expression |
---|---|
dvavadd | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 + 𝐺) = (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvafvadd.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvafvadd.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
4 | dvafvadd.v | . . . 4 ⊢ + = (+g‘𝑈) | |
5 | 1, 2, 3, 4 | dvafvadd 39070 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) |
6 | 5 | oveqd 7324 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 + 𝐺) = (𝐹(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝐺)) |
7 | coexg 7808 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ V) | |
8 | coeq1 5779 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
9 | coeq2 5780 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
10 | eqid 2736 | . . . 4 ⊢ (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) | |
11 | 8, 9, 10 | ovmpog 7464 | . . 3 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹 ∘ 𝐺) ∈ V) → (𝐹(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝐺) = (𝐹 ∘ 𝐺)) |
12 | 7, 11 | mpd3an3 1462 | . 2 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹(𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))𝐺) = (𝐹 ∘ 𝐺)) |
13 | 6, 12 | sylan9eq 2796 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 + 𝐺) = (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∘ ccom 5604 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 +gcplusg 17007 LHypclh 38040 LTrncltrn 38157 DVecAcdveca 39058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-sca 17023 df-vsca 17024 df-dveca 39059 |
This theorem is referenced by: dvalveclem 39081 dva0g 39083 dialss 39102 dia2dimlem5 39124 diblsmopel 39227 |
Copyright terms: Public domain | W3C validator |