MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmipval Structured version   Visualization version   GIF version

Theorem frlmipval 21716
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
Assertion
Ref Expression
frlmipval (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹f · 𝐺)))

Proof of Theorem frlmipval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 frlmphl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 frlmphl.v . . . . . . 7 𝑉 = (Base‘𝑌)
41, 2, 3frlmbasmap 21696 . . . . . 6 ((𝐼𝑊𝐹𝑉) → 𝐹 ∈ (𝐵m 𝐼))
54ad2ant2r 747 . . . . 5 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐹 ∈ (𝐵m 𝐼))
6 elmapi 8773 . . . . 5 (𝐹 ∈ (𝐵m 𝐼) → 𝐹:𝐼𝐵)
7 ffn 6651 . . . . 5 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
85, 6, 73syl 18 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐹 Fn 𝐼)
91, 2, 3frlmbasmap 21696 . . . . . 6 ((𝐼𝑊𝐺𝑉) → 𝐺 ∈ (𝐵m 𝐼))
109ad2ant2rl 749 . . . . 5 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐺 ∈ (𝐵m 𝐼))
11 elmapi 8773 . . . . 5 (𝐺 ∈ (𝐵m 𝐼) → 𝐺:𝐼𝐵)
12 ffn 6651 . . . . 5 (𝐺:𝐼𝐵𝐺 Fn 𝐼)
1310, 11, 123syl 18 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐺 Fn 𝐼)
14 simpll 766 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐼𝑊)
15 inidm 4174 . . . 4 (𝐼𝐼) = 𝐼
16 eqidd 2732 . . . 4 ((((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2732 . . . 4 ((((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
188, 13, 14, 14, 15, 16, 17offval 7619 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹f · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
1918oveq2d 7362 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑅 Σg (𝐹f · 𝐺)) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
20 ovexd 7381 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))) ∈ V)
21 fveq1 6821 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2221oveq1d 7361 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) · (𝑔𝑥)) = ((𝐹𝑥) · (𝑔𝑥)))
2322mpteq2dv 5183 . . . . 5 (𝑓 = 𝐹 → (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥))))
2423oveq2d 7362 . . . 4 (𝑓 = 𝐹 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥)))))
25 fveq1 6821 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2625oveq2d 7362 . . . . . 6 (𝑔 = 𝐺 → ((𝐹𝑥) · (𝑔𝑥)) = ((𝐹𝑥) · (𝐺𝑥)))
2726mpteq2dv 5183 . . . . 5 (𝑔 = 𝐺 → (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
2827oveq2d 7362 . . . 4 (𝑔 = 𝐺 → (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
29 eqid 2731 . . . 4 (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
3024, 28, 29ovmpog 7505 . . 3 ((𝐹 ∈ (𝐵m 𝐼) ∧ 𝐺 ∈ (𝐵m 𝐼) ∧ (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))) ∈ V) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
315, 10, 20, 30syl3anc 1373 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
32 frlmphl.t . . . . . 6 · = (.r𝑅)
331, 2, 32frlmip 21715 . . . . 5 ((𝐼𝑊𝑅𝑋) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
3433adantr 480 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
35 frlmphl.j . . . 4 , = (·𝑖𝑌)
3634, 35eqtr4di 2784 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = , )
3736oveqd 7363 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝐹 , 𝐺))
3819, 31, 373eqtr2rd 2773 1 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  m cmap 8750  Basecbs 17120  .rcmulr 17162  ·𝑖cip 17166   Σg cgsu 17344   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmphl  21718  rrxcph  25319
  Copyright terms: Public domain W3C validator