Step | Hyp | Ref
| Expression |
1 | | frlmphl.y |
. . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
2 | | frlmphl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
3 | | frlmphl.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑌) |
4 | 1, 2, 3 | frlmbasmap 20966 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ (𝐵 ↑m 𝐼)) |
5 | 4 | ad2ant2r 744 |
. . . . 5
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → 𝐹 ∈ (𝐵 ↑m 𝐼)) |
6 | | elmapi 8637 |
. . . . 5
⊢ (𝐹 ∈ (𝐵 ↑m 𝐼) → 𝐹:𝐼⟶𝐵) |
7 | | ffn 6600 |
. . . . 5
⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) |
8 | 5, 6, 7 | 3syl 18 |
. . . 4
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → 𝐹 Fn 𝐼) |
9 | 1, 2, 3 | frlmbasmap 20966 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝑉) → 𝐺 ∈ (𝐵 ↑m 𝐼)) |
10 | 9 | ad2ant2rl 746 |
. . . . 5
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → 𝐺 ∈ (𝐵 ↑m 𝐼)) |
11 | | elmapi 8637 |
. . . . 5
⊢ (𝐺 ∈ (𝐵 ↑m 𝐼) → 𝐺:𝐼⟶𝐵) |
12 | | ffn 6600 |
. . . . 5
⊢ (𝐺:𝐼⟶𝐵 → 𝐺 Fn 𝐼) |
13 | 10, 11, 12 | 3syl 18 |
. . . 4
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → 𝐺 Fn 𝐼) |
14 | | simpll 764 |
. . . 4
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → 𝐼 ∈ 𝑊) |
15 | | inidm 4152 |
. . . 4
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
16 | | eqidd 2739 |
. . . 4
⊢ ((((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
17 | | eqidd 2739 |
. . . 4
⊢ ((((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
18 | 8, 13, 14, 14, 15, 16, 17 | offval 7542 |
. . 3
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹 ∘f · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
19 | 18 | oveq2d 7291 |
. 2
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝑅 Σg (𝐹 ∘f · 𝐺)) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))))) |
20 | | ovexd 7310 |
. . 3
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ V) |
21 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
22 | 21 | oveq1d 7290 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) · (𝑔‘𝑥)) = ((𝐹‘𝑥) · (𝑔‘𝑥))) |
23 | 22 | mpteq2dv 5176 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝑔‘𝑥)))) |
24 | 23 | oveq2d 7291 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝑔‘𝑥))))) |
25 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) |
26 | 25 | oveq2d 7291 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝐹‘𝑥) · (𝑔‘𝑥)) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
27 | 26 | mpteq2dv 5176 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
28 | 27 | oveq2d 7291 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝑔‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))))) |
29 | | eqid 2738 |
. . . 4
⊢ (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) |
30 | 24, 28, 29 | ovmpog 7432 |
. . 3
⊢ ((𝐹 ∈ (𝐵 ↑m 𝐼) ∧ 𝐺 ∈ (𝐵 ↑m 𝐼) ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ V) → (𝐹(𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))𝐺) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))))) |
31 | 5, 10, 20, 30 | syl3anc 1370 |
. 2
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹(𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))𝐺) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))))) |
32 | | frlmphl.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
33 | 1, 2, 32 | frlmip 20985 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) =
(·𝑖‘𝑌)) |
34 | 33 | adantr 481 |
. . . 4
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) =
(·𝑖‘𝑌)) |
35 | | frlmphl.j |
. . . 4
⊢ , =
(·𝑖‘𝑌) |
36 | 34, 35 | eqtr4di 2796 |
. . 3
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = , ) |
37 | 36 | oveqd 7292 |
. 2
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹(𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))𝐺) = (𝐹 , 𝐺)) |
38 | 19, 31, 37 | 3eqtr2rd 2785 |
1
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹 ∘f · 𝐺))) |