![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngmul-rN | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
erngset.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
erng.m-r | ⊢ · = (.r‘𝐷) |
Ref | Expression |
---|---|
erngmul-rN | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑉 ∘ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h-r | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t-r | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e-r | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d-r | . . . . 5 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
5 | erng.m-r | . . . . 5 ⊢ · = (.r‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngfmul-rN 40514 | . . . 4 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))) |
7 | 6 | adantr 479 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))) |
8 | 7 | oveqd 7443 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))𝑉)) |
9 | coexg 7944 | . . . . 5 ⊢ ((𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) → (𝑉 ∘ 𝑈) ∈ V) | |
10 | 9 | ancoms 457 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑉 ∘ 𝑈) ∈ V) |
11 | coeq2 5867 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑡 ∘ 𝑠) = (𝑡 ∘ 𝑈)) | |
12 | coeq1 5866 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 ∘ 𝑈) = (𝑉 ∘ 𝑈)) | |
13 | eqid 2726 | . . . . 5 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠)) = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠)) | |
14 | 11, 12, 13 | ovmpog 7587 | . . . 4 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑉 ∘ 𝑈) ∈ V) → (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))𝑉) = (𝑉 ∘ 𝑈)) |
15 | 10, 14 | mpd3an3 1459 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))𝑉) = (𝑉 ∘ 𝑈)) |
16 | 15 | adantl 480 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))𝑉) = (𝑉 ∘ 𝑈)) |
17 | 8, 16 | eqtrd 2766 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑉 ∘ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∘ ccom 5688 ‘cfv 6556 (class class class)co 7426 ∈ cmpo 7428 .rcmulr 17269 LHypclh 39685 LTrncltrn 39802 TEndoctendo 40453 EDRingRcedring-rN 40455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12613 df-uz 12877 df-fz 13541 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17216 df-plusg 17281 df-mulr 17282 df-edring-rN 40457 |
This theorem is referenced by: erngdvlem3-rN 40699 erngdvlem4-rN 40700 |
Copyright terms: Public domain | W3C validator |