![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngmul-rN | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
erngset.h-r | β’ π» = (LHypβπΎ) |
erngset.t-r | β’ π = ((LTrnβπΎ)βπ) |
erngset.e-r | β’ πΈ = ((TEndoβπΎ)βπ) |
erngset.d-r | β’ π· = ((EDRingRβπΎ)βπ) |
erng.m-r | β’ Β· = (.rβπ·) |
Ref | Expression |
---|---|
erngmul-rN | β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ)) β (π Β· π) = (π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h-r | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | erngset.t-r | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
3 | erngset.e-r | . . . . 5 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | erngset.d-r | . . . . 5 β’ π· = ((EDRingRβπΎ)βπ) | |
5 | erng.m-r | . . . . 5 β’ Β· = (.rβπ·) | |
6 | 1, 2, 3, 4, 5 | erngfmul-rN 39679 | . . . 4 β’ ((πΎ β π β§ π β π») β Β· = (π β πΈ, π‘ β πΈ β¦ (π‘ β π ))) |
7 | 6 | adantr 481 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ)) β Β· = (π β πΈ, π‘ β πΈ β¦ (π‘ β π ))) |
8 | 7 | oveqd 7425 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ)) β (π Β· π) = (π(π β πΈ, π‘ β πΈ β¦ (π‘ β π ))π)) |
9 | coexg 7919 | . . . . 5 β’ ((π β πΈ β§ π β πΈ) β (π β π) β V) | |
10 | 9 | ancoms 459 | . . . 4 β’ ((π β πΈ β§ π β πΈ) β (π β π) β V) |
11 | coeq2 5858 | . . . . 5 β’ (π = π β (π‘ β π ) = (π‘ β π)) | |
12 | coeq1 5857 | . . . . 5 β’ (π‘ = π β (π‘ β π) = (π β π)) | |
13 | eqid 2732 | . . . . 5 β’ (π β πΈ, π‘ β πΈ β¦ (π‘ β π )) = (π β πΈ, π‘ β πΈ β¦ (π‘ β π )) | |
14 | 11, 12, 13 | ovmpog 7566 | . . . 4 β’ ((π β πΈ β§ π β πΈ β§ (π β π) β V) β (π(π β πΈ, π‘ β πΈ β¦ (π‘ β π ))π) = (π β π)) |
15 | 10, 14 | mpd3an3 1462 | . . 3 β’ ((π β πΈ β§ π β πΈ) β (π(π β πΈ, π‘ β πΈ β¦ (π‘ β π ))π) = (π β π)) |
16 | 15 | adantl 482 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ)) β (π(π β πΈ, π‘ β πΈ β¦ (π‘ β π ))π) = (π β π)) |
17 | 8, 16 | eqtrd 2772 | 1 β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ)) β (π Β· π) = (π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β ccom 5680 βcfv 6543 (class class class)co 7408 β cmpo 7410 .rcmulr 17197 LHypclh 38850 LTrncltrn 38967 TEndoctendo 39618 EDRingRcedring-rN 39620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-edring-rN 39622 |
This theorem is referenced by: erngdvlem3-rN 39864 erngdvlem4-rN 39865 |
Copyright terms: Public domain | W3C validator |