![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem1 | Structured version Visualization version GIF version |
Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
phplem1 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7353 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | nordeq 5997 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | |
3 | disjsn2 4479 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∩ {𝐵}) = ∅) |
5 | 1, 4 | sylan 575 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∩ {𝐵}) = ∅) |
6 | undif4 4259 | . . 3 ⊢ (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵})) | |
7 | df-suc 5984 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
8 | 7 | equncomi 3982 | . . . 4 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
9 | 8 | difeq1i 3947 | . . 3 ⊢ (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵}) |
10 | 6, 9 | syl6eqr 2832 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∖ cdif 3789 ∪ cun 3790 ∩ cin 3791 ∅c0 4141 {csn 4398 Ord word 5977 suc csuc 5980 ωcom 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-tr 4990 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-om 7346 |
This theorem is referenced by: phplem2 8430 |
Copyright terms: Public domain | W3C validator |