MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1 Structured version   Visualization version   GIF version

Theorem phplem1 9174
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
phplem1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ∈ ω)
2 peano2 7869 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
3 enrefnn 9021 . . . . 5 (suc 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴)
54adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → suc 𝐴 ≈ suc 𝐴)
6 simpr 484 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐵 ∈ suc 𝐴)
7 dif1ennn 9131 . . 3 ((𝐴 ∈ ω ∧ suc 𝐴 ≈ suc 𝐴𝐵 ∈ suc 𝐴) → (suc 𝐴 ∖ {𝐵}) ≈ 𝐴)
81, 5, 6, 7syl3anc 1373 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → (suc 𝐴 ∖ {𝐵}) ≈ 𝐴)
9 nnfi 9137 . . 3 (𝐴 ∈ ω → 𝐴 ∈ Fin)
10 ensymfib 9154 . . 3 (𝐴 ∈ Fin → (𝐴 ≈ (suc 𝐴 ∖ {𝐵}) ↔ (suc 𝐴 ∖ {𝐵}) ≈ 𝐴))
111, 9, 103syl 18 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ≈ (suc 𝐴 ∖ {𝐵}) ↔ (suc 𝐴 ∖ {𝐵}) ≈ 𝐴))
128, 11mpbird 257 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cdif 3914  {csn 4592   class class class wbr 5110  suc csuc 6337  ωcom 7845  cen 8918  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925
This theorem is referenced by:  phplem2  9175  php  9177
  Copyright terms: Public domain W3C validator