| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| phplem1 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ∈ ω) | |
| 2 | peano2 7830 | . . . . 5 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
| 3 | enrefnn 8979 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → suc 𝐴 ≈ suc 𝐴) |
| 6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐵 ∈ suc 𝐴) | |
| 7 | dif1ennn 9085 | . . 3 ⊢ ((𝐴 ∈ ω ∧ suc 𝐴 ≈ suc 𝐴 ∧ 𝐵 ∈ suc 𝐴) → (suc 𝐴 ∖ {𝐵}) ≈ 𝐴) | |
| 8 | 1, 5, 6, 7 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → (suc 𝐴 ∖ {𝐵}) ≈ 𝐴) |
| 9 | nnfi 9091 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 10 | ensymfib 9108 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ (suc 𝐴 ∖ {𝐵}) ↔ (suc 𝐴 ∖ {𝐵}) ≈ 𝐴)) | |
| 11 | 1, 9, 10 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ≈ (suc 𝐴 ∖ {𝐵}) ↔ (suc 𝐴 ∖ {𝐵}) ≈ 𝐴)) |
| 12 | 8, 11 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 class class class wbr 5095 suc csuc 6313 ωcom 7806 ≈ cen 8876 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-fin 8883 |
| This theorem is referenced by: phplem2 9129 php 9131 |
| Copyright terms: Public domain | W3C validator |