| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2mpfval | Structured version Visualization version GIF version | ||
| Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
| pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
| pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
| pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
| pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| Ref | Expression |
|---|---|
| pm2mpfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2mpval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | pm2mpval.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 3 | pm2mpval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | pm2mpval.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
| 5 | pm2mpval.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
| 6 | pm2mpval.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
| 7 | pm2mpval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 8 | pm2mpval.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
| 9 | pm2mpval.t | . . . 4 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpval 22698 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 12 | oveq1 7360 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘)) | |
| 13 | 12 | oveq1d 7368 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
| 14 | 13 | mpteq2dv 5189 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 15 | 14 | oveq2d 7369 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 16 | 15 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 17 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 18 | ovexd 7388 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) ∈ V) | |
| 19 | 11, 16, 17, 18 | fvmptd 6941 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℕ0cn0 12402 Basecbs 17138 ·𝑠 cvsca 17183 Σg cgsu 17362 .gcmg 18964 mulGrpcmgp 20043 var1cv1 22076 Poly1cpl1 22077 Mat cmat 22310 decompPMat cdecpmat 22665 pMatToMatPoly cpm2mp 22695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-pm2mp 22696 |
| This theorem is referenced by: pm2mpcl 22700 pm2mpf1 22702 pm2mpcoe1 22703 idpm2idmp 22704 mp2pm2mp 22714 pm2mpghm 22719 pm2mpmhmlem2 22722 monmat2matmon 22727 |
| Copyright terms: Public domain | W3C validator |