![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2mpfval | Structured version Visualization version GIF version |
Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
Ref | Expression |
---|---|
pm2mpfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | pm2mpval.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
3 | pm2mpval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | pm2mpval.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
5 | pm2mpval.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
6 | pm2mpval.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
7 | pm2mpval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | pm2mpval.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
9 | pm2mpval.t | . . . 4 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpval 22826 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
11 | 10 | 3adant3 1133 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
12 | oveq1 7445 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘)) | |
13 | 12 | oveq1d 7453 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
14 | 13 | mpteq2dv 5253 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
15 | 14 | oveq2d 7454 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
16 | 15 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
17 | simp3 1139 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
18 | ovexd 7473 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) ∈ V) | |
19 | 11, 16, 17, 18 | fvmptd 7030 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 ℕ0cn0 12533 Basecbs 17254 ·𝑠 cvsca 17311 Σg cgsu 17496 .gcmg 19107 mulGrpcmgp 20161 var1cv1 22202 Poly1cpl1 22203 Mat cmat 22436 decompPMat cdecpmat 22793 pMatToMatPoly cpm2mp 22823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-pm2mp 22824 |
This theorem is referenced by: pm2mpcl 22828 pm2mpf1 22830 pm2mpcoe1 22831 idpm2idmp 22832 mp2pm2mp 22842 pm2mpghm 22847 pm2mpmhmlem2 22850 monmat2matmon 22855 |
Copyright terms: Public domain | W3C validator |