| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2mpfval | Structured version Visualization version GIF version | ||
| Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
| pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
| pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
| pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
| pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| Ref | Expression |
|---|---|
| pm2mpfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2mpval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | pm2mpval.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 3 | pm2mpval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | pm2mpval.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
| 5 | pm2mpval.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
| 6 | pm2mpval.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
| 7 | pm2mpval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 8 | pm2mpval.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
| 9 | pm2mpval.t | . . . 4 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpval 22689 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 12 | oveq1 7397 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘)) | |
| 13 | 12 | oveq1d 7405 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
| 14 | 13 | mpteq2dv 5204 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 15 | 14 | oveq2d 7406 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 16 | 15 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 17 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 18 | ovexd 7425 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) ∈ V) | |
| 19 | 11, 16, 17, 18 | fvmptd 6978 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℕ0cn0 12449 Basecbs 17186 ·𝑠 cvsca 17231 Σg cgsu 17410 .gcmg 19006 mulGrpcmgp 20056 var1cv1 22067 Poly1cpl1 22068 Mat cmat 22301 decompPMat cdecpmat 22656 pMatToMatPoly cpm2mp 22686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm2mp 22687 |
| This theorem is referenced by: pm2mpcl 22691 pm2mpf1 22693 pm2mpcoe1 22694 idpm2idmp 22695 mp2pm2mp 22705 pm2mpghm 22710 pm2mpmhmlem2 22713 monmat2matmon 22718 |
| Copyright terms: Public domain | W3C validator |