MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpfval Structured version   Visualization version   GIF version

Theorem pm2mpfval 22827
Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpfval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑇(𝑘)   (𝑘)   (𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem pm2mpfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . 4 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . . 4 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
5 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
7 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9pm2mpval 22826 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
11103adant3 1133 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
12 oveq1 7445 . . . . . 6 (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘))
1312oveq1d 7453 . . . . 5 (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) (𝑘 𝑋)) = ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))
1413mpteq2dv 5253 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))))
1514oveq2d 7454 . . 3 (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
1615adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
17 simp3 1139 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
18 ovexd 7473 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))) ∈ V)
1911, 16, 17, 18fvmptd 7030 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  Vcvv 3481  cmpt 5234  cfv 6569  (class class class)co 7438  Fincfn 8993  0cn0 12533  Basecbs 17254   ·𝑠 cvsca 17311   Σg cgsu 17496  .gcmg 19107  mulGrpcmgp 20161  var1cv1 22202  Poly1cpl1 22203   Mat cmat 22436   decompPMat cdecpmat 22793   pMatToMatPoly cpm2mp 22823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-pm2mp 22824
This theorem is referenced by:  pm2mpcl  22828  pm2mpf1  22830  pm2mpcoe1  22831  idpm2idmp  22832  mp2pm2mp  22842  pm2mpghm  22847  pm2mpmhmlem2  22850  monmat2matmon  22855
  Copyright terms: Public domain W3C validator