| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2mpfval | Structured version Visualization version GIF version | ||
| Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
| pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
| pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
| pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
| pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| Ref | Expression |
|---|---|
| pm2mpfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2mpval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | pm2mpval.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 3 | pm2mpval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | pm2mpval.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
| 5 | pm2mpval.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
| 6 | pm2mpval.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
| 7 | pm2mpval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 8 | pm2mpval.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
| 9 | pm2mpval.t | . . . 4 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpval 22708 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 12 | oveq1 7353 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘)) | |
| 13 | 12 | oveq1d 7361 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
| 14 | 13 | mpteq2dv 5185 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
| 15 | 14 | oveq2d 7362 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 16 | 15 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 17 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 18 | ovexd 7381 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) ∈ V) | |
| 19 | 11, 16, 17, 18 | fvmptd 6936 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℕ0cn0 12378 Basecbs 17117 ·𝑠 cvsca 17162 Σg cgsu 17341 .gcmg 18977 mulGrpcmgp 20056 var1cv1 22086 Poly1cpl1 22087 Mat cmat 22320 decompPMat cdecpmat 22675 pMatToMatPoly cpm2mp 22705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm2mp 22706 |
| This theorem is referenced by: pm2mpcl 22710 pm2mpf1 22712 pm2mpcoe1 22713 idpm2idmp 22714 mp2pm2mp 22724 pm2mpghm 22729 pm2mpmhmlem2 22732 monmat2matmon 22737 |
| Copyright terms: Public domain | W3C validator |