Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2mpfval | Structured version Visualization version GIF version |
Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
pm2mpval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pm2mpval.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pm2mpval.b | ⊢ 𝐵 = (Base‘𝐶) |
pm2mpval.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
pm2mpval.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
pm2mpval.x | ⊢ 𝑋 = (var1‘𝐴) |
pm2mpval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pm2mpval.q | ⊢ 𝑄 = (Poly1‘𝐴) |
pm2mpval.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
Ref | Expression |
---|---|
pm2mpfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | pm2mpval.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
3 | pm2mpval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | pm2mpval.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
5 | pm2mpval.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
6 | pm2mpval.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
7 | pm2mpval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | pm2mpval.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
9 | pm2mpval.t | . . . 4 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpval 21944 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
11 | 10 | 3adant3 1131 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
12 | oveq1 7282 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘)) | |
13 | 12 | oveq1d 7290 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) |
14 | 13 | mpteq2dv 5176 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) |
15 | 14 | oveq2d 7291 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
16 | 15 | adantl 482 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
17 | simp3 1137 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
18 | ovexd 7310 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) ∈ V) | |
19 | 11, 16, 17, 18 | fvmptd 6882 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℕ0cn0 12233 Basecbs 16912 ·𝑠 cvsca 16966 Σg cgsu 17151 .gcmg 18700 mulGrpcmgp 19720 var1cv1 21347 Poly1cpl1 21348 Mat cmat 21554 decompPMat cdecpmat 21911 pMatToMatPoly cpm2mp 21941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm2mp 21942 |
This theorem is referenced by: pm2mpcl 21946 pm2mpf1 21948 pm2mpcoe1 21949 idpm2idmp 21950 mp2pm2mp 21960 pm2mpghm 21965 pm2mpmhmlem2 21968 monmat2matmon 21973 |
Copyright terms: Public domain | W3C validator |