MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpfval Structured version   Visualization version   GIF version

Theorem pm2mpfval 22712
Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpfval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑇(𝑘)   (𝑘)   (𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem pm2mpfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . 4 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . . 4 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
5 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
7 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9pm2mpval 22711 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
11103adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
12 oveq1 7359 . . . . . 6 (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘))
1312oveq1d 7367 . . . . 5 (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) (𝑘 𝑋)) = ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))
1413mpteq2dv 5187 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))))
1514oveq2d 7368 . . 3 (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
1615adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
17 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
18 ovexd 7387 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))) ∈ V)
1911, 16, 17, 18fvmptd 6942 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5174  cfv 6486  (class class class)co 7352  Fincfn 8875  0cn0 12388  Basecbs 17122   ·𝑠 cvsca 17167   Σg cgsu 17346  .gcmg 18982  mulGrpcmgp 20060  var1cv1 22089  Poly1cpl1 22090   Mat cmat 22323   decompPMat cdecpmat 22678   pMatToMatPoly cpm2mp 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-pm2mp 22709
This theorem is referenced by:  pm2mpcl  22713  pm2mpf1  22715  pm2mpcoe1  22716  idpm2idmp  22717  mp2pm2mp  22727  pm2mpghm  22732  pm2mpmhmlem2  22735  monmat2matmon  22740
  Copyright terms: Public domain W3C validator