MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpfval Structured version   Visualization version   GIF version

Theorem pm2mpfval 22825
Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpfval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Distinct variable groups:   𝑘,𝑁   𝑅,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑇(𝑘)   (𝑘)   (𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem pm2mpfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . . 4 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . . 4 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . . 4 = ( ·𝑠𝑄)
5 pm2mpval.e . . . 4 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . . 4 𝑋 = (var1𝐴)
7 pm2mpval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . . 4 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9pm2mpval 22824 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
11103adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))
12 oveq1 7457 . . . . . 6 (𝑚 = 𝑀 → (𝑚 decompPMat 𝑘) = (𝑀 decompPMat 𝑘))
1312oveq1d 7465 . . . . 5 (𝑚 = 𝑀 → ((𝑚 decompPMat 𝑘) (𝑘 𝑋)) = ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))
1413mpteq2dv 5268 . . . 4 (𝑚 = 𝑀 → (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))))
1514oveq2d 7466 . . 3 (𝑚 = 𝑀 → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
1615adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
17 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
18 ovexd 7485 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))) ∈ V)
1911, 16, 17, 18fvmptd 7038 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6575  (class class class)co 7450  Fincfn 9005  0cn0 12555  Basecbs 17260   ·𝑠 cvsca 17317   Σg cgsu 17502  .gcmg 19109  mulGrpcmgp 20163  var1cv1 22200  Poly1cpl1 22201   Mat cmat 22434   decompPMat cdecpmat 22791   pMatToMatPoly cpm2mp 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-pm2mp 22822
This theorem is referenced by:  pm2mpcl  22826  pm2mpf1  22828  pm2mpcoe1  22829  idpm2idmp  22830  mp2pm2mp  22840  pm2mpghm  22845  pm2mpmhmlem2  22848  monmat2matmon  22853
  Copyright terms: Public domain W3C validator