MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpcl Structured version   Visualization version   GIF version

Theorem pm2mpcl 22787
Description: The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐿)

Proof of Theorem pm2mpcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22786 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
11 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
12 eqid 2726 . . 3 (0g𝑄) = (0g𝑄)
137matring 22433 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
148ply1ring 22233 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
15 ringcmn 20257 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
1613, 14, 153syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
17163adant3 1129 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ CMnd)
18 nn0ex 12524 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
20133adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
2120adantr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
22 simpl2 1189 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
23 simpl3 1190 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀𝐵)
24 simpr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
25 eqid 2726 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
261, 2, 3, 7, 25decpmatcl 22757 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴))
2722, 23, 24, 26syl3anc 1368 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴))
28 eqid 2726 . . . . . 6 (mulGrp‘𝑄) = (mulGrp‘𝑄)
2925, 8, 6, 4, 28, 5, 11ply1tmcl 22259 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ 𝑘 ∈ ℕ0) → ((𝑀 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
3021, 27, 24, 29syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑀 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
3130fmpttd 7121 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))):ℕ0𝐿)
328ply1lmod 22237 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
3320, 32syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ LMod)
34 eqidd 2727 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑄) = (Scalar‘𝑄))
358, 6, 28, 5, 11ply1moncl 22258 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
3620, 35sylan 578 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
37 eqid 2726 . . . 4 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
38 eqid 2726 . . . . . . 7 (0g𝐴) = (0g𝐴)
391, 2, 3, 7, 38decpmatfsupp 22759 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g𝐴))
40393adant1 1127 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g𝐴))
418ply1sca 22238 . . . . . . . 8 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
4241eqcomd 2732 . . . . . . 7 (𝐴 ∈ Ring → (Scalar‘𝑄) = 𝐴)
4320, 42syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑄) = 𝐴)
4443fveq2d 6897 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g‘(Scalar‘𝑄)) = (0g𝐴))
4540, 44breqtrrd 5173 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘(Scalar‘𝑄)))
4619, 33, 34, 11, 27, 36, 12, 37, 4, 45mptscmfsupp0 20899 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
4711, 12, 17, 19, 31, 46gsumcl 19909 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))) ∈ 𝐿)
4810, 47eqeltrd 2826 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462   class class class wbr 5145  cmpt 5228  cfv 6546  (class class class)co 7416  Fincfn 8966   finSupp cfsupp 9398  0cn0 12518  Basecbs 17208  Scalarcsca 17264   ·𝑠 cvsca 17265  0gc0g 17449   Σg cgsu 17450  .gcmg 19057  CMndccmn 19774  mulGrpcmgp 20113  Ringcrg 20212  LModclmod 20832  var1cv1 22161  Poly1cpl1 22162   Mat cmat 22395   decompPMat cdecpmat 22752   pMatToMatPoly cpm2mp 22782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-subrng 20524  df-subrg 20549  df-lmod 20834  df-lss 20905  df-sra 21147  df-rgmod 21148  df-dsmm 21726  df-frlm 21741  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168  df-mamu 22379  df-mat 22396  df-decpmat 22753  df-pm2mp 22783
This theorem is referenced by:  pm2mpf  22788  pm2mpf1  22789
  Copyright terms: Public domain W3C validator