MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpcl Structured version   Visualization version   GIF version

Theorem pm2mpcl 22713
Description: The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐿)

Proof of Theorem pm2mpcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
101, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22712 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))
11 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
12 eqid 2731 . . 3 (0g𝑄) = (0g𝑄)
137matring 22359 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
148ply1ring 22161 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
15 ringcmn 20201 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ CMnd)
1613, 14, 153syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ CMnd)
17163adant3 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ CMnd)
18 nn0ex 12387 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
20133adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
2120adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ Ring)
22 simpl2 1193 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
23 simpl3 1194 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀𝐵)
24 simpr 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
25 eqid 2731 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
261, 2, 3, 7, 25decpmatcl 22683 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴))
2722, 23, 24, 26syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴))
28 eqid 2731 . . . . . 6 (mulGrp‘𝑄) = (mulGrp‘𝑄)
2925, 8, 6, 4, 28, 5, 11ply1tmcl 22187 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ 𝑘 ∈ ℕ0) → ((𝑀 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
3021, 27, 24, 29syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑀 decompPMat 𝑘) (𝑘 𝑋)) ∈ 𝐿)
3130fmpttd 7048 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))):ℕ0𝐿)
328ply1lmod 22165 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
3320, 32syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ LMod)
34 eqidd 2732 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑄) = (Scalar‘𝑄))
358, 6, 28, 5, 11ply1moncl 22186 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
3620, 35sylan 580 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
37 eqid 2731 . . . 4 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
38 eqid 2731 . . . . . . 7 (0g𝐴) = (0g𝐴)
391, 2, 3, 7, 38decpmatfsupp 22685 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g𝐴))
40393adant1 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g𝐴))
418ply1sca 22166 . . . . . . . 8 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
4241eqcomd 2737 . . . . . . 7 (𝐴 ∈ Ring → (Scalar‘𝑄) = 𝐴)
4320, 42syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑄) = 𝐴)
4443fveq2d 6826 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g‘(Scalar‘𝑄)) = (0g𝐴))
4540, 44breqtrrd 5119 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘(Scalar‘𝑄)))
4619, 33, 34, 11, 27, 36, 12, 37, 4, 45mptscmfsupp0 20861 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
4711, 12, 17, 19, 31, 46gsumcl 19828 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))) ∈ 𝐿)
4810, 47eqeltrd 2831 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  Fincfn 8869   finSupp cfsupp 9245  0cn0 12381  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  .gcmg 18980  CMndccmn 19693  mulGrpcmgp 20059  Ringcrg 20152  LModclmod 20794  var1cv1 22089  Poly1cpl1 22090   Mat cmat 22323   decompPMat cdecpmat 22678   pMatToMatPoly cpm2mp 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mamu 22307  df-mat 22324  df-decpmat 22679  df-pm2mp 22709
This theorem is referenced by:  pm2mpf  22714  pm2mpf1  22715
  Copyright terms: Public domain W3C validator