MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrval Structured version   Visualization version   GIF version

Theorem pmtrval 19361
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrval ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑇   𝑧,𝑃   𝑧,𝑉

Proof of Theorem pmtrval
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrfval 19360 . . . 4 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
32fveq1d 6893 . . 3 (𝐷𝑉 → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
433ad2ant1 1132 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
5 eqid 2731 . . 3 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
6 eleq2 2821 . . . . 5 (𝑝 = 𝑃 → (𝑧𝑝𝑧𝑃))
7 difeq1 4115 . . . . . 6 (𝑝 = 𝑃 → (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
87unieqd 4922 . . . . 5 (𝑝 = 𝑃 (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
96, 8ifbieq1d 4552 . . . 4 (𝑝 = 𝑃 → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
109mpteq2dv 5250 . . 3 (𝑝 = 𝑃 → (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
11 breq1 5151 . . . 4 (𝑦 = 𝑃 → (𝑦 ≈ 2o𝑃 ≈ 2o))
12 elpw2g 5344 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1312biimpar 477 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
14133adant3 1131 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
15 simp3 1137 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1611, 14, 15elrabd 3685 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
17 mptexg 7225 . . . 4 (𝐷𝑉 → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
18173ad2ant1 1132 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
195, 10, 16, 18fvmptd3 7021 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
204, 19eqtrd 2771 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  cdif 3945  wss 3948  ifcif 4528  𝒫 cpw 4602  {csn 4628   cuni 4908   class class class wbr 5148  cmpt 5231  cfv 6543  2oc2o 8463  cen 8939  pmTrspcpmtr 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-pmtr 19352
This theorem is referenced by:  pmtrfv  19362  pmtrf  19365  cycpm2tr  32549  trsp2cyc  32553
  Copyright terms: Public domain W3C validator