MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrval Structured version   Visualization version   GIF version

Theorem pmtrval 18571
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrval ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑇   𝑧,𝑃   𝑧,𝑉

Proof of Theorem pmtrval
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrfval 18570 . . . 4 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
32fveq1d 6647 . . 3 (𝐷𝑉 → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
433ad2ant1 1130 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
5 eqid 2798 . . 3 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
6 eleq2 2878 . . . . 5 (𝑝 = 𝑃 → (𝑧𝑝𝑧𝑃))
7 difeq1 4043 . . . . . 6 (𝑝 = 𝑃 → (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
87unieqd 4814 . . . . 5 (𝑝 = 𝑃 (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
96, 8ifbieq1d 4448 . . . 4 (𝑝 = 𝑃 → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
109mpteq2dv 5126 . . 3 (𝑝 = 𝑃 → (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
11 breq1 5033 . . . 4 (𝑦 = 𝑃 → (𝑦 ≈ 2o𝑃 ≈ 2o))
12 elpw2g 5211 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1312biimpar 481 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
14133adant3 1129 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷)
15 simp3 1135 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ≈ 2o)
1611, 14, 15elrabd 3630 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → 𝑃 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
17 mptexg 6961 . . . 4 (𝐷𝑉 → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
18173ad2ant1 1130 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
195, 10, 16, 18fvmptd3 6768 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
204, 19eqtrd 2833 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800   class class class wbr 5030  cmpt 5110  cfv 6324  2oc2o 8079  cen 8489  pmTrspcpmtr 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-pmtr 18562
This theorem is referenced by:  pmtrfv  18572  pmtrf  18575  cycpm2tr  30811  trsp2cyc  30815
  Copyright terms: Public domain W3C validator