| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrval | Structured version Visualization version GIF version | ||
| Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrval | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrfval 19441 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 3 | 2 | fveq1d 6889 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝑇‘𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃)) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃)) |
| 5 | eqid 2734 | . . 3 ⊢ (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) | |
| 6 | eleq2 2822 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑧 ∈ 𝑝 ↔ 𝑧 ∈ 𝑃)) | |
| 7 | difeq1 4101 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧})) | |
| 8 | 7 | unieqd 4902 | . . . . 5 ⊢ (𝑝 = 𝑃 → ∪ (𝑝 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑧})) |
| 9 | 6, 8 | ifbieq1d 4532 | . . . 4 ⊢ (𝑝 = 𝑃 → if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) |
| 10 | 9 | mpteq2dv 5226 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 11 | breq1 5128 | . . . 4 ⊢ (𝑦 = 𝑃 → (𝑦 ≈ 2o ↔ 𝑃 ≈ 2o)) | |
| 12 | elpw2g 5315 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷)) | |
| 13 | 12 | biimpar 477 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷) → 𝑃 ∈ 𝒫 𝐷) |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ 𝒫 𝐷) |
| 15 | simp3 1138 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 16 | 11, 14, 15 | elrabd 3678 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o}) |
| 17 | mptexg 7224 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) ∈ V) | |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) ∈ V) |
| 19 | 5, 10, 16, 18 | fvmptd3 7020 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 20 | 4, 19 | eqtrd 2769 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3420 Vcvv 3464 ∖ cdif 3930 ⊆ wss 3933 ifcif 4507 𝒫 cpw 4582 {csn 4608 ∪ cuni 4889 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 2oc2o 8483 ≈ cen 8965 pmTrspcpmtr 19432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-pmtr 19433 |
| This theorem is referenced by: pmtrfv 19443 pmtrf 19446 cycpm2tr 33085 trsp2cyc 33089 |
| Copyright terms: Public domain | W3C validator |