MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Visualization version   GIF version

Theorem isprm2lem 16718
Description: Lemma for isprm2 16719. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 769 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃 ≠ 1)
21necomd 2996 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ≠ 𝑃)
3 simpr 484 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o)
4 nnz 12634 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
5 1dvds 16308 . . . . . . . 8 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
64, 5syl 17 . . . . . . 7 (𝑃 ∈ ℕ → 1 ∥ 𝑃)
76ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ∥ 𝑃)
8 1nn 12277 . . . . . . 7 1 ∈ ℕ
9 breq1 5146 . . . . . . . 8 (𝑛 = 1 → (𝑛𝑃 ↔ 1 ∥ 𝑃))
109elrab3 3693 . . . . . . 7 (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃))
118, 10ax-mp 5 . . . . . 6 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃)
127, 11sylibr 234 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
13 iddvds 16307 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃𝑃)
144, 13syl 17 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃𝑃)
1514ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃𝑃)
16 breq1 5146 . . . . . . . 8 (𝑛 = 𝑃 → (𝑛𝑃𝑃𝑃))
1716elrab3 3693 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1817ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1915, 18mpbird 257 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
20 en2eqpr 10047 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
213, 12, 19, 20syl3anc 1373 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
222, 21mpd 15 . . 3 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃})
2322ex 412 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
24 necom 2994 . . . 4 (1 ≠ 𝑃𝑃 ≠ 1)
25 pr2ne 10044 . . . . . 6 ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃))
268, 25mpan 690 . . . . 5 (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2o ↔ 1 ≠ 𝑃))
2726biimpar 477 . . . 4 ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2o)
2824, 27sylan2br 595 . . 3 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2o)
29 breq1 5146 . . 3 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {1, 𝑃} ≈ 2o))
3028, 29syl5ibrcom 247 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
3123, 30impbid 212 1 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  {cpr 4628   class class class wbr 5143  2oc2o 8500  cen 8982  1c1 11156  cn 12266  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-neg 11495  df-nn 12267  df-z 12614  df-dvds 16291
This theorem is referenced by:  isprm2  16719
  Copyright terms: Public domain W3C validator