Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pren2 Structured version   Visualization version   GIF version

Theorem pren2 42236
Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pren2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))

Proof of Theorem pren2
StepHypRef Expression
1 pr2ne 9994 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
21pm5.32i 576 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
3 pr2cv 42231 . . 3 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43pm4.71ri 562 . 2 ({𝐴, 𝐵} ≈ 2o ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o))
5 df-3an 1090 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
62, 4, 53bitr4i 303 1 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088  wcel 2107  wne 2941  Vcvv 3475  {cpr 4628   class class class wbr 5146  2oc2o 8454  cen 8931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6363  df-on 6364  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-1o 8460  df-2o 8461  df-en 8935
This theorem is referenced by:  pr2eldif1  42237  pr2eldif2  42238  pren2d  42239
  Copyright terms: Public domain W3C validator