| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pren2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
| Ref | Expression |
|---|---|
| pren2 | ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pr2ne 9896 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 ≠ 𝐵)) |
| 3 | pr2cv 43640 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 3 | pm4.71ri 560 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o)) |
| 5 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 ≠ 𝐵)) | |
| 6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {cpr 4575 class class class wbr 5089 2oc2o 8379 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-2o 8386 df-en 8870 |
| This theorem is referenced by: pr2eldif1 43646 pr2eldif2 43647 pren2d 43648 |
| Copyright terms: Public domain | W3C validator |