Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pren2 Structured version   Visualization version   GIF version

Theorem pren2 40108
Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pren2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))

Proof of Theorem pren2
StepHypRef Expression
1 pr2ne 9425 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
21pm5.32i 578 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
3 pr2cv 40103 . . 3 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43pm4.71ri 564 . 2 ({𝐴, 𝐵} ≈ 2o ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o))
5 df-3an 1086 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
62, 4, 53bitr4i 306 1 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084  wcel 2115  wne 3014  Vcvv 3480  {cpr 4552   class class class wbr 5053  2oc2o 8088  cen 8498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-om 7572  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505
This theorem is referenced by:  pr2eldif1  40109  pr2eldif2  40110  pren2d  40111
  Copyright terms: Public domain W3C validator