Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pren2 Structured version   Visualization version   GIF version

Theorem pren2 43536
Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pren2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))

Proof of Theorem pren2
StepHypRef Expression
1 pr2ne 9899 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
21pm5.32i 574 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
3 pr2cv 43531 . . 3 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43pm4.71ri 560 . 2 ({𝐴, 𝐵} ≈ 2o ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o))
5 df-3an 1088 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴𝐵))
62, 4, 53bitr4i 303 1 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3436  {cpr 4579   class class class wbr 5092  2oc2o 8382  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1o 8388  df-2o 8389  df-en 8873
This theorem is referenced by:  pr2eldif1  43537  pr2eldif2  43538  pren2d  43539
  Copyright terms: Public domain W3C validator