|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pren2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| pren2 | ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pr2ne 10044 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 ≠ 𝐵)) | 
| 3 | pr2cv 43561 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 3 | pm4.71ri 560 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ {𝐴, 𝐵} ≈ 2o)) | 
| 5 | df-3an 1089 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 ≠ 𝐵)) | |
| 6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 {cpr 4628 class class class wbr 5143 2oc2o 8500 ≈ cen 8982 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-1o 8506 df-2o 8507 df-en 8986 | 
| This theorem is referenced by: pr2eldif1 43567 pr2eldif2 43568 pren2d 43569 | 
| Copyright terms: Public domain | W3C validator |