Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof22a Structured version   Visualization version   GIF version

Theorem prcof22a 49165
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof21a.n 𝑁 = (𝐷 Nat 𝐸)
prcof21a.a (𝜑𝐴 ∈ (𝐾𝑁𝐿))
prcof21a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof22a.b 𝐵 = (Base‘𝐶)
prcof22a.x (𝜑𝑋𝐵)
prcof22a.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
prcof22a (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))

Proof of Theorem prcof22a
StepHypRef Expression
1 prcof21a.n . . . 4 𝑁 = (𝐷 Nat 𝐸)
2 prcof21a.a . . . 4 (𝜑𝐴 ∈ (𝐾𝑁𝐿))
3 prcof21a.p . . . 4 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
4 prcof22a.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
51, 2, 3, 4prcof21a 49164 . . 3 (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))
65fveq1d 6875 . 2 (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = ((𝐴 ∘ (1st𝐹))‘𝑋))
7 prcof22a.b . . . 4 𝐵 = (Base‘𝐶)
8 eqid 2734 . . . 4 (Base‘𝐷) = (Base‘𝐷)
94func1st2nd 48936 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
107, 8, 9funcf1 17866 . . 3 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
11 prcof22a.x . . 3 (𝜑𝑋𝐵)
1210, 11fvco3d 6976 . 2 (𝜑 → ((𝐴 ∘ (1st𝐹))‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))
136, 12eqtrd 2769 1 (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4605  ccom 5656  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Basecbs 17215   Func cfunc 17854   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-func 17858  df-nat 17946  df-prcof 49148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator