| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof22a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof21a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof21a.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) |
| prcof21a.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) |
| prcof22a.b | ⊢ 𝐵 = (Base‘𝐶) |
| prcof22a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| prcof22a.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| prcof22a | ⊢ (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st ‘𝐹)‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof21a.n | . . . 4 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 2 | prcof21a.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) | |
| 3 | prcof21a.p | . . . 4 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) | |
| 4 | prcof22a.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 5 | 1, 2, 3, 4 | prcof21a 49164 | . . 3 ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| 6 | 5 | fveq1d 6875 | . 2 ⊢ (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = ((𝐴 ∘ (1st ‘𝐹))‘𝑋)) |
| 7 | prcof22a.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 4 | func1st2nd 48936 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 10 | 7, 8, 9 | funcf1 17866 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
| 11 | prcof22a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | fvco3d 6976 | . 2 ⊢ (𝜑 → ((𝐴 ∘ (1st ‘𝐹))‘𝑋) = (𝐴‘((1st ‘𝐹)‘𝑋))) |
| 13 | 6, 12 | eqtrd 2769 | 1 ⊢ (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st ‘𝐹)‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4605 ∘ ccom 5656 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Basecbs 17215 Func cfunc 17854 Nat cnat 17944 −∘F cprcof 49147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-map 8837 df-ixp 8907 df-func 17858 df-nat 17946 df-prcof 49148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |