Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof22a Structured version   Visualization version   GIF version

Theorem prcof22a 49374
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof21a.n 𝑁 = (𝐷 Nat 𝐸)
prcof21a.a (𝜑𝐴 ∈ (𝐾𝑁𝐿))
prcof21a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof22a.b 𝐵 = (Base‘𝐶)
prcof22a.x (𝜑𝑋𝐵)
prcof22a.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
prcof22a (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))

Proof of Theorem prcof22a
StepHypRef Expression
1 prcof21a.n . . . 4 𝑁 = (𝐷 Nat 𝐸)
2 prcof21a.a . . . 4 (𝜑𝐴 ∈ (𝐾𝑁𝐿))
3 prcof21a.p . . . 4 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
4 prcof22a.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
51, 2, 3, 4prcof21a 49373 . . 3 (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))
65fveq1d 6842 . 2 (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = ((𝐴 ∘ (1st𝐹))‘𝑋))
7 prcof22a.b . . . 4 𝐵 = (Base‘𝐶)
8 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
94func1st2nd 49058 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
107, 8, 9funcf1 17808 . . 3 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
11 prcof22a.x . . 3 (𝜑𝑋𝐵)
1210, 11fvco3d 6943 . 2 (𝜑 → ((𝐴 ∘ (1st𝐹))‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))
136, 12eqtrd 2764 1 (𝜑 → (((𝐾𝑃𝐿)‘𝐴)‘𝑋) = (𝐴‘((1st𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591  ccom 5635  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155   Func cfunc 17796   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-func 17800  df-nat 17888  df-prcof 49356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator