Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof21a Structured version   Visualization version   GIF version

Theorem prcof21a 49386
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof21a.n 𝑁 = (𝐷 Nat 𝐸)
prcof21a.a (𝜑𝐴 ∈ (𝐾𝑁𝐿))
prcof21a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof21a.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcof21a (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))

Proof of Theorem prcof21a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prcof21a.n . . 3 𝑁 = (𝐷 Nat 𝐸)
2 prcof21a.a . . . . 5 (𝜑𝐴 ∈ (𝐾𝑁𝐿))
31natrcl 17860 . . . . 5 (𝐴 ∈ (𝐾𝑁𝐿) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸)))
42, 3syl 17 . . . 4 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸)))
54simpld 494 . . 3 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
64simprd 495 . . 3 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
7 prcof21a.p . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
8 prcof21a.f . . 3 (𝜑𝐹𝑈)
91, 5, 6, 7, 8prcof2a 49384 . 2 (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
10 simpr 484 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 = 𝐴)
1110coeq1d 5804 . 2 ((𝜑𝑎 = 𝐴) → (𝑎 ∘ (1st𝐹)) = (𝐴 ∘ (1st𝐹)))
12 fvexd 6837 . . 3 (𝜑 → (1st𝐹) ∈ V)
132, 12coexd 7864 . 2 (𝜑 → (𝐴 ∘ (1st𝐹)) ∈ V)
149, 11, 2, 13fvmptd 6937 1 (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  ccom 5623  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-ixp 8825  df-func 17765  df-nat 17853  df-prcof 49369
This theorem is referenced by:  prcof22a  49387  prcofdiag  49389  lanup  49636  ranup  49637
  Copyright terms: Public domain W3C validator