| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof21a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof21a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof21a.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) |
| prcof21a.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) |
| prcof21a.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcof21a | ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof21a.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 2 | prcof21a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) | |
| 3 | 1 | natrcl 17860 | . . . . 5 ⊢ (𝐴 ∈ (𝐾𝑁𝐿) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 5 | 4 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 6 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| 7 | prcof21a.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) | |
| 8 | prcof21a.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 9 | 1, 5, 6, 7, 8 | prcof2a 49384 | . 2 ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
| 11 | 10 | coeq1d 5804 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑎 ∘ (1st ‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| 12 | fvexd 6837 | . . 3 ⊢ (𝜑 → (1st ‘𝐹) ∈ V) | |
| 13 | 2, 12 | coexd 7864 | . 2 ⊢ (𝜑 → (𝐴 ∘ (1st ‘𝐹)) ∈ V) |
| 14 | 9, 11, 2, 13 | fvmptd 6937 | 1 ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 Func cfunc 17761 Nat cnat 17851 −∘F cprcof 49368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-ixp 8825 df-func 17765 df-nat 17853 df-prcof 49369 |
| This theorem is referenced by: prcof22a 49387 prcofdiag 49389 lanup 49636 ranup 49637 |
| Copyright terms: Public domain | W3C validator |