| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof21a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof21a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof21a.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) |
| prcof21a.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) |
| prcof21a.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcof21a | ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof21a.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 2 | prcof21a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) | |
| 3 | 1 | natrcl 17860 | . . . . 5 ⊢ (𝐴 ∈ (𝐾𝑁𝐿) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 5 | 4 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 6 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| 7 | prcof21a.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) | |
| 8 | prcof21a.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 9 | 1, 5, 6, 7, 8 | prcof2a 49500 | . 2 ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
| 11 | 10 | coeq1d 5800 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑎 ∘ (1st ‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| 12 | fvexd 6837 | . . 3 ⊢ (𝜑 → (1st ‘𝐹) ∈ V) | |
| 13 | 2, 12 | coexd 7861 | . 2 ⊢ (𝜑 → (𝐴 ∘ (1st ‘𝐹)) ∈ V) |
| 14 | 9, 11, 2, 13 | fvmptd 6936 | 1 ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Func cfunc 17761 Nat cnat 17851 −∘F cprcof 49484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-func 17765 df-nat 17853 df-prcof 49485 |
| This theorem is referenced by: prcof22a 49503 prcofdiag 49505 lanup 49752 ranup 49753 |
| Copyright terms: Public domain | W3C validator |