Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof21a Structured version   Visualization version   GIF version

Theorem prcof21a 49164
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof21a.n 𝑁 = (𝐷 Nat 𝐸)
prcof21a.a (𝜑𝐴 ∈ (𝐾𝑁𝐿))
prcof21a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof21a.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcof21a (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))

Proof of Theorem prcof21a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prcof21a.n . . 3 𝑁 = (𝐷 Nat 𝐸)
2 prcof21a.a . . . . 5 (𝜑𝐴 ∈ (𝐾𝑁𝐿))
31natrcl 17953 . . . . 5 (𝐴 ∈ (𝐾𝑁𝐿) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸)))
42, 3syl 17 . . . 4 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸)))
54simpld 494 . . 3 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
64simprd 495 . . 3 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
7 prcof21a.p . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
8 prcof21a.f . . 3 (𝜑𝐹𝑈)
91, 5, 6, 7, 8prcof2a 49162 . 2 (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
10 simpr 484 . . 3 ((𝜑𝑎 = 𝐴) → 𝑎 = 𝐴)
1110coeq1d 5839 . 2 ((𝜑𝑎 = 𝐴) → (𝑎 ∘ (1st𝐹)) = (𝐴 ∘ (1st𝐹)))
12 fvexd 6888 . . 3 (𝜑 → (1st𝐹) ∈ V)
132, 12coexd 7922 . 2 (𝜑 → (𝐴 ∘ (1st𝐹)) ∈ V)
149, 11, 2, 13fvmptd 6990 1 (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605  ccom 5656  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-ixp 8907  df-func 17858  df-nat 17946  df-prcof 49148
This theorem is referenced by:  prcof22a  49165  lanup  49376  ranup  49377
  Copyright terms: Public domain W3C validator