| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof21a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof21a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof21a.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) |
| prcof21a.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) |
| prcof21a.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcof21a | ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof21a.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 2 | prcof21a.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐾𝑁𝐿)) | |
| 3 | 1 | natrcl 17953 | . . . . 5 ⊢ (𝐴 ∈ (𝐾𝑁𝐿) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝐿 ∈ (𝐷 Func 𝐸))) |
| 5 | 4 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 6 | 4 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| 7 | prcof21a.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) | |
| 8 | prcof21a.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 9 | 1, 5, 6, 7, 8 | prcof2a 49162 | . 2 ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
| 11 | 10 | coeq1d 5839 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑎 ∘ (1st ‘𝐹)) = (𝐴 ∘ (1st ‘𝐹))) |
| 12 | fvexd 6888 | . . 3 ⊢ (𝜑 → (1st ‘𝐹) ∈ V) | |
| 13 | 2, 12 | coexd 7922 | . 2 ⊢ (𝜑 → (𝐴 ∘ (1st ‘𝐹)) ∈ V) |
| 14 | 9, 11, 2, 13 | fvmptd 6990 | 1 ⊢ (𝜑 → ((𝐾𝑃𝐿)‘𝐴) = (𝐴 ∘ (1st ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 ∘ ccom 5656 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Func cfunc 17854 Nat cnat 17944 −∘F cprcof 49147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-ixp 8907 df-func 17858 df-nat 17946 df-prcof 49148 |
| This theorem is referenced by: prcof22a 49165 lanup 49376 ranup 49377 |
| Copyright terms: Public domain | W3C validator |