Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pren2d Structured version   Visualization version   GIF version

Theorem pren2d 41144
Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.)
Hypotheses
Ref Expression
sur0020.a (𝜑𝐴𝑉)
sur0020.b (𝜑𝐵𝑊)
sur0020.aneb (𝜑𝐴𝐵)
Assertion
Ref Expression
pren2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem pren2d
StepHypRef Expression
1 sur0020.a . . 3 (𝜑𝐴𝑉)
21elexd 3449 . 2 (𝜑𝐴 ∈ V)
3 sur0020.b . . 3 (𝜑𝐵𝑊)
43elexd 3449 . 2 (𝜑𝐵 ∈ V)
5 sur0020.aneb . 2 (𝜑𝐴𝐵)
6 pren2 41141 . 2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
72, 4, 5, 6syl3anbrc 1342 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2943  Vcvv 3429  {cpr 4563   class class class wbr 5073  2oc2o 8278  cen 8717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-om 7703  df-1o 8284  df-2o 8285  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator