Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pren2d Structured version   Visualization version   GIF version

Theorem pren2d 43518
Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.)
Hypotheses
Ref Expression
pren2d.a (𝜑𝐴𝑉)
pren2d.b (𝜑𝐵𝑊)
pren2d.aneb (𝜑𝐴𝐵)
Assertion
Ref Expression
pren2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem pren2d
StepHypRef Expression
1 pren2d.a . . 3 (𝜑𝐴𝑉)
21elexd 3512 . 2 (𝜑𝐴 ∈ V)
3 pren2d.b . . 3 (𝜑𝐵𝑊)
43elexd 3512 . 2 (𝜑𝐵 ∈ V)
5 pren2d.aneb . 2 (𝜑𝐴𝐵)
6 pren2 43515 . 2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
72, 4, 5, 6syl3anbrc 1343 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  Vcvv 3488  {cpr 4650   class class class wbr 5166  2oc2o 8516  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-2o 8523  df-en 9004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator