![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pren2d | Structured version Visualization version GIF version |
Description: A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
Ref | Expression |
---|---|
pren2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pren2d.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
pren2d.aneb | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pren2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | 1 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | pren2d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | 3 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | pren2d.aneb | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
6 | pren2 43515 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
7 | 2, 4, 5, 6 | syl3anbrc 1343 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {cpr 4650 class class class wbr 5166 2oc2o 8516 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-en 9004 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |