MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2en Structured version   Visualization version   GIF version

Theorem pw2en 8752
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.)
Hypothesis
Ref Expression
pw2en.1 𝐴 ∈ V
Assertion
Ref Expression
pw2en 𝒫 𝐴 ≈ (2om 𝐴)

Proof of Theorem pw2en
StepHypRef Expression
1 pw2en.1 . 2 𝐴 ∈ V
2 pw2eng 8751 . 2 (𝐴 ∈ V → 𝒫 𝐴 ≈ (2om 𝐴))
31, 2ax-mp 5 1 𝒫 𝐴 ≈ (2om 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3408  𝒫 cpw 4513   class class class wbr 5053  (class class class)co 7213  2oc2o 8196  m cmap 8508  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1o 8202  df-2o 8203  df-map 8510  df-en 8627
This theorem is referenced by:  aleph1  10185  alephexp1  10193  pwcfsdom  10197  cfpwsdom  10198  hashpw  14003  rpnnen  15788  rexpen  15789
  Copyright terms: Public domain W3C validator