MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2en Structured version   Visualization version   GIF version

Theorem pw2en 9008
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.)
Hypothesis
Ref Expression
pw2en.1 𝐴 ∈ V
Assertion
Ref Expression
pw2en 𝒫 𝐴 ≈ (2om 𝐴)

Proof of Theorem pw2en
StepHypRef Expression
1 pw2en.1 . 2 𝐴 ∈ V
2 pw2eng 9007 . 2 (𝐴 ∈ V → 𝒫 𝐴 ≈ (2om 𝐴))
31, 2ax-mp 5 1 𝒫 𝐴 ≈ (2om 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  𝒫 cpw 4553   class class class wbr 5095  (class class class)co 7353  2oc2o 8389  m cmap 8760  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-2o 8396  df-map 8762  df-en 8880
This theorem is referenced by:  aleph1  10484  alephexp1  10492  pwcfsdom  10496  cfpwsdom  10497  hashpw  14361  rpnnen  16154  rexpen  16155
  Copyright terms: Public domain W3C validator