Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pw2en | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.) |
Ref | Expression |
---|---|
pw2en.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pw2en | ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2en.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pw2eng 8751 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 𝒫 cpw 4513 class class class wbr 5053 (class class class)co 7213 2oc2o 8196 ↑m cmap 8508 ≈ cen 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1o 8202 df-2o 8203 df-map 8510 df-en 8627 |
This theorem is referenced by: aleph1 10185 alephexp1 10193 pwcfsdom 10197 cfpwsdom 10198 hashpw 14003 rpnnen 15788 rexpen 15789 |
Copyright terms: Public domain | W3C validator |