| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2en | Structured version Visualization version GIF version | ||
| Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.) |
| Ref | Expression |
|---|---|
| pw2en.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pw2en | ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2en.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pw2eng 9006 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3438 𝒫 cpw 4551 class class class wbr 5095 (class class class)co 7355 2oc2o 8388 ↑m cmap 8759 ≈ cen 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1o 8394 df-2o 8395 df-map 8761 df-en 8879 |
| This theorem is referenced by: aleph1 10472 alephexp1 10480 pwcfsdom 10484 cfpwsdom 10485 hashpw 14353 rpnnen 16146 rexpen 16147 |
| Copyright terms: Public domain | W3C validator |