MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2en Structured version   Visualization version   GIF version

Theorem pw2en 8420
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.)
Hypothesis
Ref Expression
pw2en.1 𝐴 ∈ V
Assertion
Ref Expression
pw2en 𝒫 𝐴 ≈ (2o𝑚 𝐴)

Proof of Theorem pw2en
StepHypRef Expression
1 pw2en.1 . 2 𝐴 ∈ V
2 pw2eng 8419 . 2 (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o𝑚 𝐴))
31, 2ax-mp 5 1 𝒫 𝐴 ≈ (2o𝑚 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2050  Vcvv 3415  𝒫 cpw 4422   class class class wbr 4929  (class class class)co 6976  2oc2o 7899  𝑚 cmap 8206  cen 8303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1o 7905  df-2o 7906  df-map 8208  df-en 8307
This theorem is referenced by:  aleph1  9791  alephexp1  9799  pwcfsdom  9803  cfpwsdom  9804  hashpw  13610  rpnnen  15440  rexpen  15441
  Copyright terms: Public domain W3C validator