MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen Structured version   Visualization version   GIF version

Theorem rpnnen 16120
Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16136, which only asserts that is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12917 and rpnnen2 16119, each showing an injection in one direction, and this last part uses sbth 9044 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
rpnnen ℝ ≈ 𝒫 ℕ

Proof of Theorem rpnnen
StepHypRef Expression
1 nnex 12168 . . . 4 ℕ ∈ V
2 qex 12895 . . . 4 ℚ ∈ V
31, 2rpnnen1 12917 . . 3 ℝ ≼ (ℚ ↑m ℕ)
4 qnnen 16106 . . . . . . 7 ℚ ≈ ℕ
51canth2 9081 . . . . . . 7 ℕ ≺ 𝒫 ℕ
6 ensdomtr 9064 . . . . . . 7 ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ)
74, 5, 6mp2an 690 . . . . . 6 ℚ ≺ 𝒫 ℕ
8 sdomdom 8927 . . . . . 6 (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ)
9 mapdom1 9093 . . . . . 6 (ℚ ≼ 𝒫 ℕ → (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ))
107, 8, 9mp2b 10 . . . . 5 (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ)
111pw2en 9030 . . . . . 6 𝒫 ℕ ≈ (2om ℕ)
121enref 8932 . . . . . 6 ℕ ≈ ℕ
13 mapen 9092 . . . . . 6 ((𝒫 ℕ ≈ (2om ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ))
1411, 12, 13mp2an 690 . . . . 5 (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ)
15 domentr 8960 . . . . 5 (((ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) ∧ (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ)) → (ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ))
1610, 14, 15mp2an 690 . . . 4 (ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ)
17 2onn 8593 . . . . . . 7 2o ∈ ω
18 mapxpen 9094 . . . . . . 7 ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2om ℕ) ↑m ℕ) ≈ (2om (ℕ × ℕ)))
1917, 1, 1, 18mp3an 1461 . . . . . 6 ((2om ℕ) ↑m ℕ) ≈ (2om (ℕ × ℕ))
2017elexi 3465 . . . . . . . 8 2o ∈ V
2120enref 8932 . . . . . . 7 2o ≈ 2o
22 xpnnen 16104 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
23 mapen 9092 . . . . . . 7 ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2om (ℕ × ℕ)) ≈ (2om ℕ))
2421, 22, 23mp2an 690 . . . . . 6 (2om (ℕ × ℕ)) ≈ (2om ℕ)
2519, 24entri 8955 . . . . 5 ((2om ℕ) ↑m ℕ) ≈ (2om ℕ)
2625, 11entr4i 8958 . . . 4 ((2om ℕ) ↑m ℕ) ≈ 𝒫 ℕ
27 domentr 8960 . . . 4 (((ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ) ∧ ((2om ℕ) ↑m ℕ) ≈ 𝒫 ℕ) → (ℚ ↑m ℕ) ≼ 𝒫 ℕ)
2816, 26, 27mp2an 690 . . 3 (ℚ ↑m ℕ) ≼ 𝒫 ℕ
29 domtr 8954 . . 3 ((ℝ ≼ (ℚ ↑m ℕ) ∧ (ℚ ↑m ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ)
303, 28, 29mp2an 690 . 2 ℝ ≼ 𝒫 ℕ
31 rpnnen2 16119 . . 3 𝒫 ℕ ≼ (0[,]1)
32 reex 11151 . . . 4 ℝ ∈ V
33 unitssre 13426 . . . 4 (0[,]1) ⊆ ℝ
34 ssdomg 8947 . . . 4 (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ))
3532, 33, 34mp2 9 . . 3 (0[,]1) ≼ ℝ
36 domtr 8954 . . 3 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ)
3731, 35, 36mp2an 690 . 2 𝒫 ℕ ≼ ℝ
38 sbth 9044 . 2 ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ)
3930, 37, 38mp2an 690 1 ℝ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3446  wss 3913  𝒫 cpw 4565   class class class wbr 5110   × cxp 5636  (class class class)co 7362  ωcom 7807  2oc2o 8411  m cmap 8772  cen 8887  cdom 8888  csdm 8889  cr 11059  0cc0 11060  1c1 11061  cn 12162  cq 12882  [,]cicc 13277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-acn 9887  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-q 12883  df-rp 12925  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-limsup 15365  df-clim 15382  df-rlim 15383  df-sum 15583
This theorem is referenced by:  rexpen  16121  cpnnen  16122  rucALT  16123  cnso  16140  2ndcredom  22838  opnreen  24231
  Copyright terms: Public domain W3C validator