![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen | Structured version Visualization version GIF version |
Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 15417, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12221 and rpnnen2 15400, each showing an injection in one direction, and this last part uses sbth 8474 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen | ⊢ ℝ ≈ 𝒫 ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11481 | . . . 4 ⊢ ℕ ∈ V | |
2 | qex 12199 | . . . 4 ⊢ ℚ ∈ V | |
3 | 1, 2 | rpnnen1 12221 | . . 3 ⊢ ℝ ≼ (ℚ ↑𝑚 ℕ) |
4 | qnnen 15387 | . . . . . . 7 ⊢ ℚ ≈ ℕ | |
5 | 1 | canth2 8507 | . . . . . . 7 ⊢ ℕ ≺ 𝒫 ℕ |
6 | ensdomtr 8490 | . . . . . . 7 ⊢ ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ) | |
7 | 4, 5, 6 | mp2an 688 | . . . . . 6 ⊢ ℚ ≺ 𝒫 ℕ |
8 | sdomdom 8375 | . . . . . 6 ⊢ (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ) | |
9 | mapdom1 8519 | . . . . . 6 ⊢ (ℚ ≼ 𝒫 ℕ → (ℚ ↑𝑚 ℕ) ≼ (𝒫 ℕ ↑𝑚 ℕ)) | |
10 | 7, 8, 9 | mp2b 10 | . . . . 5 ⊢ (ℚ ↑𝑚 ℕ) ≼ (𝒫 ℕ ↑𝑚 ℕ) |
11 | 1 | pw2en 8461 | . . . . . 6 ⊢ 𝒫 ℕ ≈ (2o ↑𝑚 ℕ) |
12 | 1 | enref 8380 | . . . . . 6 ⊢ ℕ ≈ ℕ |
13 | mapen 8518 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ (2o ↑𝑚 ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑𝑚 ℕ) ≈ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ)) | |
14 | 11, 12, 13 | mp2an 688 | . . . . 5 ⊢ (𝒫 ℕ ↑𝑚 ℕ) ≈ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) |
15 | domentr 8406 | . . . . 5 ⊢ (((ℚ ↑𝑚 ℕ) ≼ (𝒫 ℕ ↑𝑚 ℕ) ∧ (𝒫 ℕ ↑𝑚 ℕ) ≈ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ)) → (ℚ ↑𝑚 ℕ) ≼ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ)) | |
16 | 10, 14, 15 | mp2an 688 | . . . 4 ⊢ (ℚ ↑𝑚 ℕ) ≼ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) |
17 | 2onn 8107 | . . . . . . 7 ⊢ 2o ∈ ω | |
18 | mapxpen 8520 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ≈ (2o ↑𝑚 (ℕ × ℕ))) | |
19 | 17, 1, 1, 18 | mp3an 1451 | . . . . . 6 ⊢ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ≈ (2o ↑𝑚 (ℕ × ℕ)) |
20 | 17 | elexi 3451 | . . . . . . . 8 ⊢ 2o ∈ V |
21 | 20 | enref 8380 | . . . . . . 7 ⊢ 2o ≈ 2o |
22 | xpnnen 15385 | . . . . . . 7 ⊢ (ℕ × ℕ) ≈ ℕ | |
23 | mapen 8518 | . . . . . . 7 ⊢ ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2o ↑𝑚 (ℕ × ℕ)) ≈ (2o ↑𝑚 ℕ)) | |
24 | 21, 22, 23 | mp2an 688 | . . . . . 6 ⊢ (2o ↑𝑚 (ℕ × ℕ)) ≈ (2o ↑𝑚 ℕ) |
25 | 19, 24 | entri 8401 | . . . . 5 ⊢ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ≈ (2o ↑𝑚 ℕ) |
26 | 25, 11 | entr4i 8404 | . . . 4 ⊢ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ≈ 𝒫 ℕ |
27 | domentr 8406 | . . . 4 ⊢ (((ℚ ↑𝑚 ℕ) ≼ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ∧ ((2o ↑𝑚 ℕ) ↑𝑚 ℕ) ≈ 𝒫 ℕ) → (ℚ ↑𝑚 ℕ) ≼ 𝒫 ℕ) | |
28 | 16, 26, 27 | mp2an 688 | . . 3 ⊢ (ℚ ↑𝑚 ℕ) ≼ 𝒫 ℕ |
29 | domtr 8400 | . . 3 ⊢ ((ℝ ≼ (ℚ ↑𝑚 ℕ) ∧ (ℚ ↑𝑚 ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ) | |
30 | 3, 28, 29 | mp2an 688 | . 2 ⊢ ℝ ≼ 𝒫 ℕ |
31 | rpnnen2 15400 | . . 3 ⊢ 𝒫 ℕ ≼ (0[,]1) | |
32 | reex 10463 | . . . 4 ⊢ ℝ ∈ V | |
33 | unitssre 12724 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
34 | ssdomg 8393 | . . . 4 ⊢ (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ)) | |
35 | 32, 33, 34 | mp2 9 | . . 3 ⊢ (0[,]1) ≼ ℝ |
36 | domtr 8400 | . . 3 ⊢ ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ) | |
37 | 31, 35, 36 | mp2an 688 | . 2 ⊢ 𝒫 ℕ ≼ ℝ |
38 | sbth 8474 | . 2 ⊢ ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ) | |
39 | 30, 37, 38 | mp2an 688 | 1 ⊢ ℝ ≈ 𝒫 ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2079 Vcvv 3432 ⊆ wss 3854 𝒫 cpw 4447 class class class wbr 4956 × cxp 5433 (class class class)co 7007 ωcom 7427 2oc2o 7938 ↑𝑚 cmap 8247 ≈ cen 8344 ≼ cdom 8345 ≺ csdm 8346 ℝcr 10371 0cc0 10372 1c1 10373 ℕcn 11475 ℚcq 12186 [,]cicc 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-fal 1533 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-omul 7949 df-er 8130 df-map 8249 df-pm 8250 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-sup 8742 df-inf 8743 df-oi 8810 df-card 9203 df-acn 9206 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-n0 11735 df-z 11819 df-uz 12083 df-q 12187 df-rp 12229 df-ico 12583 df-icc 12584 df-fz 12732 df-fzo 12873 df-fl 13000 df-seq 13208 df-exp 13268 df-hash 13529 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-limsup 14650 df-clim 14667 df-rlim 14668 df-sum 14865 |
This theorem is referenced by: rexpen 15402 cpnnen 15403 rucALT 15404 cnso 15421 2ndcredom 21730 opnreen 23110 |
Copyright terms: Public domain | W3C validator |