| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen | Structured version Visualization version GIF version | ||
| Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16261, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12999 and rpnnen2 16244, each showing an injection in one direction, and this last part uses sbth 9107 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| rpnnen | ⊢ ℝ ≈ 𝒫 ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12246 | . . . 4 ⊢ ℕ ∈ V | |
| 2 | qex 12977 | . . . 4 ⊢ ℚ ∈ V | |
| 3 | 1, 2 | rpnnen1 12999 | . . 3 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| 4 | qnnen 16231 | . . . . . . 7 ⊢ ℚ ≈ ℕ | |
| 5 | 1 | canth2 9144 | . . . . . . 7 ⊢ ℕ ≺ 𝒫 ℕ |
| 6 | ensdomtr 9127 | . . . . . . 7 ⊢ ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . 6 ⊢ ℚ ≺ 𝒫 ℕ |
| 8 | sdomdom 8994 | . . . . . 6 ⊢ (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ) | |
| 9 | mapdom1 9156 | . . . . . 6 ⊢ (ℚ ≼ 𝒫 ℕ → (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ)) | |
| 10 | 7, 8, 9 | mp2b 10 | . . . . 5 ⊢ (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) |
| 11 | 1 | pw2en 9093 | . . . . . 6 ⊢ 𝒫 ℕ ≈ (2o ↑m ℕ) |
| 12 | 1 | enref 8999 | . . . . . 6 ⊢ ℕ ≈ ℕ |
| 13 | mapen 9155 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ (2o ↑m ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . . 5 ⊢ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ) |
| 15 | domentr 9027 | . . . . 5 ⊢ (((ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) ∧ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) → (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ)) | |
| 16 | 10, 14, 15 | mp2an 692 | . . . 4 ⊢ (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) |
| 17 | 2onn 8654 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 18 | mapxpen 9157 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ))) | |
| 19 | 17, 1, 1, 18 | mp3an 1463 | . . . . . 6 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ)) |
| 20 | 17 | elexi 3482 | . . . . . . . 8 ⊢ 2o ∈ V |
| 21 | 20 | enref 8999 | . . . . . . 7 ⊢ 2o ≈ 2o |
| 22 | xpnnen 16229 | . . . . . . 7 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 23 | mapen 9155 | . . . . . . 7 ⊢ ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ)) | |
| 24 | 21, 22, 23 | mp2an 692 | . . . . . 6 ⊢ (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ) |
| 25 | 19, 24 | entri 9022 | . . . . 5 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m ℕ) |
| 26 | 25, 11 | entr4i 9025 | . . . 4 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ |
| 27 | domentr 9027 | . . . 4 ⊢ (((ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) ∧ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ) → (ℚ ↑m ℕ) ≼ 𝒫 ℕ) | |
| 28 | 16, 26, 27 | mp2an 692 | . . 3 ⊢ (ℚ ↑m ℕ) ≼ 𝒫 ℕ |
| 29 | domtr 9021 | . . 3 ⊢ ((ℝ ≼ (ℚ ↑m ℕ) ∧ (ℚ ↑m ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ) | |
| 30 | 3, 28, 29 | mp2an 692 | . 2 ⊢ ℝ ≼ 𝒫 ℕ |
| 31 | rpnnen2 16244 | . . 3 ⊢ 𝒫 ℕ ≼ (0[,]1) | |
| 32 | reex 11220 | . . . 4 ⊢ ℝ ∈ V | |
| 33 | unitssre 13516 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
| 34 | ssdomg 9014 | . . . 4 ⊢ (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ)) | |
| 35 | 32, 33, 34 | mp2 9 | . . 3 ⊢ (0[,]1) ≼ ℝ |
| 36 | domtr 9021 | . . 3 ⊢ ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ) | |
| 37 | 31, 35, 36 | mp2an 692 | . 2 ⊢ 𝒫 ℕ ≼ ℝ |
| 38 | sbth 9107 | . 2 ⊢ ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ) | |
| 39 | 30, 37, 38 | mp2an 692 | 1 ⊢ ℝ ≈ 𝒫 ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 × cxp 5652 (class class class)co 7405 ωcom 7861 2oc2o 8474 ↑m cmap 8840 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 ℝcr 11128 0cc0 11129 1c1 11130 ℕcn 12240 ℚcq 12964 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: rexpen 16246 cpnnen 16247 rucALT 16248 cnso 16265 2ndcredom 23388 opnreen 24771 |
| Copyright terms: Public domain | W3C validator |