Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen | Structured version Visualization version GIF version |
Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 15952, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12723 and rpnnen2 15935, each showing an injection in one direction, and this last part uses sbth 8880 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen | ⊢ ℝ ≈ 𝒫 ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11979 | . . . 4 ⊢ ℕ ∈ V | |
2 | qex 12701 | . . . 4 ⊢ ℚ ∈ V | |
3 | 1, 2 | rpnnen1 12723 | . . 3 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
4 | qnnen 15922 | . . . . . . 7 ⊢ ℚ ≈ ℕ | |
5 | 1 | canth2 8917 | . . . . . . 7 ⊢ ℕ ≺ 𝒫 ℕ |
6 | ensdomtr 8900 | . . . . . . 7 ⊢ ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ) | |
7 | 4, 5, 6 | mp2an 689 | . . . . . 6 ⊢ ℚ ≺ 𝒫 ℕ |
8 | sdomdom 8768 | . . . . . 6 ⊢ (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ) | |
9 | mapdom1 8929 | . . . . . 6 ⊢ (ℚ ≼ 𝒫 ℕ → (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ)) | |
10 | 7, 8, 9 | mp2b 10 | . . . . 5 ⊢ (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) |
11 | 1 | pw2en 8866 | . . . . . 6 ⊢ 𝒫 ℕ ≈ (2o ↑m ℕ) |
12 | 1 | enref 8773 | . . . . . 6 ⊢ ℕ ≈ ℕ |
13 | mapen 8928 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ (2o ↑m ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) | |
14 | 11, 12, 13 | mp2an 689 | . . . . 5 ⊢ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ) |
15 | domentr 8799 | . . . . 5 ⊢ (((ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) ∧ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) → (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ)) | |
16 | 10, 14, 15 | mp2an 689 | . . . 4 ⊢ (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) |
17 | 2onn 8472 | . . . . . . 7 ⊢ 2o ∈ ω | |
18 | mapxpen 8930 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ))) | |
19 | 17, 1, 1, 18 | mp3an 1460 | . . . . . 6 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ)) |
20 | 17 | elexi 3451 | . . . . . . . 8 ⊢ 2o ∈ V |
21 | 20 | enref 8773 | . . . . . . 7 ⊢ 2o ≈ 2o |
22 | xpnnen 15920 | . . . . . . 7 ⊢ (ℕ × ℕ) ≈ ℕ | |
23 | mapen 8928 | . . . . . . 7 ⊢ ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ)) | |
24 | 21, 22, 23 | mp2an 689 | . . . . . 6 ⊢ (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ) |
25 | 19, 24 | entri 8794 | . . . . 5 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m ℕ) |
26 | 25, 11 | entr4i 8797 | . . . 4 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ |
27 | domentr 8799 | . . . 4 ⊢ (((ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) ∧ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ) → (ℚ ↑m ℕ) ≼ 𝒫 ℕ) | |
28 | 16, 26, 27 | mp2an 689 | . . 3 ⊢ (ℚ ↑m ℕ) ≼ 𝒫 ℕ |
29 | domtr 8793 | . . 3 ⊢ ((ℝ ≼ (ℚ ↑m ℕ) ∧ (ℚ ↑m ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ) | |
30 | 3, 28, 29 | mp2an 689 | . 2 ⊢ ℝ ≼ 𝒫 ℕ |
31 | rpnnen2 15935 | . . 3 ⊢ 𝒫 ℕ ≼ (0[,]1) | |
32 | reex 10962 | . . . 4 ⊢ ℝ ∈ V | |
33 | unitssre 13231 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
34 | ssdomg 8786 | . . . 4 ⊢ (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ)) | |
35 | 32, 33, 34 | mp2 9 | . . 3 ⊢ (0[,]1) ≼ ℝ |
36 | domtr 8793 | . . 3 ⊢ ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ) | |
37 | 31, 35, 36 | mp2an 689 | . 2 ⊢ 𝒫 ℕ ≼ ℝ |
38 | sbth 8880 | . 2 ⊢ ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ) | |
39 | 30, 37, 38 | mp2an 689 | 1 ⊢ ℝ ≈ 𝒫 ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 × cxp 5587 (class class class)co 7275 ωcom 7712 2oc2o 8291 ↑m cmap 8615 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 ℝcr 10870 0cc0 10871 1c1 10872 ℕcn 11973 ℚcq 12688 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 |
This theorem is referenced by: rexpen 15937 cpnnen 15938 rucALT 15939 cnso 15956 2ndcredom 22601 opnreen 23994 |
Copyright terms: Public domain | W3C validator |