MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen Structured version   Visualization version   GIF version

Theorem rpnnen 16263
Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16279, which only asserts that is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 13025 and rpnnen2 16262, each showing an injection in one direction, and this last part uses sbth 9133 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
rpnnen ℝ ≈ 𝒫 ℕ

Proof of Theorem rpnnen
StepHypRef Expression
1 nnex 12272 . . . 4 ℕ ∈ V
2 qex 13003 . . . 4 ℚ ∈ V
31, 2rpnnen1 13025 . . 3 ℝ ≼ (ℚ ↑m ℕ)
4 qnnen 16249 . . . . . . 7 ℚ ≈ ℕ
51canth2 9170 . . . . . . 7 ℕ ≺ 𝒫 ℕ
6 ensdomtr 9153 . . . . . . 7 ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ)
74, 5, 6mp2an 692 . . . . . 6 ℚ ≺ 𝒫 ℕ
8 sdomdom 9020 . . . . . 6 (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ)
9 mapdom1 9182 . . . . . 6 (ℚ ≼ 𝒫 ℕ → (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ))
107, 8, 9mp2b 10 . . . . 5 (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ)
111pw2en 9119 . . . . . 6 𝒫 ℕ ≈ (2om ℕ)
121enref 9025 . . . . . 6 ℕ ≈ ℕ
13 mapen 9181 . . . . . 6 ((𝒫 ℕ ≈ (2om ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ))
1411, 12, 13mp2an 692 . . . . 5 (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ)
15 domentr 9053 . . . . 5 (((ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) ∧ (𝒫 ℕ ↑m ℕ) ≈ ((2om ℕ) ↑m ℕ)) → (ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ))
1610, 14, 15mp2an 692 . . . 4 (ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ)
17 2onn 8680 . . . . . . 7 2o ∈ ω
18 mapxpen 9183 . . . . . . 7 ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2om ℕ) ↑m ℕ) ≈ (2om (ℕ × ℕ)))
1917, 1, 1, 18mp3an 1463 . . . . . 6 ((2om ℕ) ↑m ℕ) ≈ (2om (ℕ × ℕ))
2017elexi 3503 . . . . . . . 8 2o ∈ V
2120enref 9025 . . . . . . 7 2o ≈ 2o
22 xpnnen 16247 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
23 mapen 9181 . . . . . . 7 ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2om (ℕ × ℕ)) ≈ (2om ℕ))
2421, 22, 23mp2an 692 . . . . . 6 (2om (ℕ × ℕ)) ≈ (2om ℕ)
2519, 24entri 9048 . . . . 5 ((2om ℕ) ↑m ℕ) ≈ (2om ℕ)
2625, 11entr4i 9051 . . . 4 ((2om ℕ) ↑m ℕ) ≈ 𝒫 ℕ
27 domentr 9053 . . . 4 (((ℚ ↑m ℕ) ≼ ((2om ℕ) ↑m ℕ) ∧ ((2om ℕ) ↑m ℕ) ≈ 𝒫 ℕ) → (ℚ ↑m ℕ) ≼ 𝒫 ℕ)
2816, 26, 27mp2an 692 . . 3 (ℚ ↑m ℕ) ≼ 𝒫 ℕ
29 domtr 9047 . . 3 ((ℝ ≼ (ℚ ↑m ℕ) ∧ (ℚ ↑m ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ)
303, 28, 29mp2an 692 . 2 ℝ ≼ 𝒫 ℕ
31 rpnnen2 16262 . . 3 𝒫 ℕ ≼ (0[,]1)
32 reex 11246 . . . 4 ℝ ∈ V
33 unitssre 13539 . . . 4 (0[,]1) ⊆ ℝ
34 ssdomg 9040 . . . 4 (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ))
3532, 33, 34mp2 9 . . 3 (0[,]1) ≼ ℝ
36 domtr 9047 . . 3 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ)
3731, 35, 36mp2an 692 . 2 𝒫 ℕ ≼ ℝ
38 sbth 9133 . 2 ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ)
3930, 37, 38mp2an 692 1 ℝ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143   × cxp 5683  (class class class)co 7431  ωcom 7887  2oc2o 8500  m cmap 8866  cen 8982  cdom 8983  csdm 8984  cr 11154  0cc0 11155  1c1 11156  cn 12266  cq 12990  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723
This theorem is referenced by:  rexpen  16264  cpnnen  16265  rucALT  16266  cnso  16283  2ndcredom  23458  opnreen  24853
  Copyright terms: Public domain W3C validator