![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen | Structured version Visualization version GIF version |
Description: The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 16136, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 12917 and rpnnen2 16119, each showing an injection in one direction, and this last part uses sbth 9044 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen | ⊢ ℝ ≈ 𝒫 ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12168 | . . . 4 ⊢ ℕ ∈ V | |
2 | qex 12895 | . . . 4 ⊢ ℚ ∈ V | |
3 | 1, 2 | rpnnen1 12917 | . . 3 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
4 | qnnen 16106 | . . . . . . 7 ⊢ ℚ ≈ ℕ | |
5 | 1 | canth2 9081 | . . . . . . 7 ⊢ ℕ ≺ 𝒫 ℕ |
6 | ensdomtr 9064 | . . . . . . 7 ⊢ ((ℚ ≈ ℕ ∧ ℕ ≺ 𝒫 ℕ) → ℚ ≺ 𝒫 ℕ) | |
7 | 4, 5, 6 | mp2an 690 | . . . . . 6 ⊢ ℚ ≺ 𝒫 ℕ |
8 | sdomdom 8927 | . . . . . 6 ⊢ (ℚ ≺ 𝒫 ℕ → ℚ ≼ 𝒫 ℕ) | |
9 | mapdom1 9093 | . . . . . 6 ⊢ (ℚ ≼ 𝒫 ℕ → (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ)) | |
10 | 7, 8, 9 | mp2b 10 | . . . . 5 ⊢ (ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) |
11 | 1 | pw2en 9030 | . . . . . 6 ⊢ 𝒫 ℕ ≈ (2o ↑m ℕ) |
12 | 1 | enref 8932 | . . . . . 6 ⊢ ℕ ≈ ℕ |
13 | mapen 9092 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ (2o ↑m ℕ) ∧ ℕ ≈ ℕ) → (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) | |
14 | 11, 12, 13 | mp2an 690 | . . . . 5 ⊢ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ) |
15 | domentr 8960 | . . . . 5 ⊢ (((ℚ ↑m ℕ) ≼ (𝒫 ℕ ↑m ℕ) ∧ (𝒫 ℕ ↑m ℕ) ≈ ((2o ↑m ℕ) ↑m ℕ)) → (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ)) | |
16 | 10, 14, 15 | mp2an 690 | . . . 4 ⊢ (ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) |
17 | 2onn 8593 | . . . . . . 7 ⊢ 2o ∈ ω | |
18 | mapxpen 9094 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ ℕ ∈ V ∧ ℕ ∈ V) → ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ))) | |
19 | 17, 1, 1, 18 | mp3an 1461 | . . . . . 6 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m (ℕ × ℕ)) |
20 | 17 | elexi 3465 | . . . . . . . 8 ⊢ 2o ∈ V |
21 | 20 | enref 8932 | . . . . . . 7 ⊢ 2o ≈ 2o |
22 | xpnnen 16104 | . . . . . . 7 ⊢ (ℕ × ℕ) ≈ ℕ | |
23 | mapen 9092 | . . . . . . 7 ⊢ ((2o ≈ 2o ∧ (ℕ × ℕ) ≈ ℕ) → (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ)) | |
24 | 21, 22, 23 | mp2an 690 | . . . . . 6 ⊢ (2o ↑m (ℕ × ℕ)) ≈ (2o ↑m ℕ) |
25 | 19, 24 | entri 8955 | . . . . 5 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ (2o ↑m ℕ) |
26 | 25, 11 | entr4i 8958 | . . . 4 ⊢ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ |
27 | domentr 8960 | . . . 4 ⊢ (((ℚ ↑m ℕ) ≼ ((2o ↑m ℕ) ↑m ℕ) ∧ ((2o ↑m ℕ) ↑m ℕ) ≈ 𝒫 ℕ) → (ℚ ↑m ℕ) ≼ 𝒫 ℕ) | |
28 | 16, 26, 27 | mp2an 690 | . . 3 ⊢ (ℚ ↑m ℕ) ≼ 𝒫 ℕ |
29 | domtr 8954 | . . 3 ⊢ ((ℝ ≼ (ℚ ↑m ℕ) ∧ (ℚ ↑m ℕ) ≼ 𝒫 ℕ) → ℝ ≼ 𝒫 ℕ) | |
30 | 3, 28, 29 | mp2an 690 | . 2 ⊢ ℝ ≼ 𝒫 ℕ |
31 | rpnnen2 16119 | . . 3 ⊢ 𝒫 ℕ ≼ (0[,]1) | |
32 | reex 11151 | . . . 4 ⊢ ℝ ∈ V | |
33 | unitssre 13426 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
34 | ssdomg 8947 | . . . 4 ⊢ (ℝ ∈ V → ((0[,]1) ⊆ ℝ → (0[,]1) ≼ ℝ)) | |
35 | 32, 33, 34 | mp2 9 | . . 3 ⊢ (0[,]1) ≼ ℝ |
36 | domtr 8954 | . . 3 ⊢ ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≼ ℝ) → 𝒫 ℕ ≼ ℝ) | |
37 | 31, 35, 36 | mp2an 690 | . 2 ⊢ 𝒫 ℕ ≼ ℝ |
38 | sbth 9044 | . 2 ⊢ ((ℝ ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ ℝ) → ℝ ≈ 𝒫 ℕ) | |
39 | 30, 37, 38 | mp2an 690 | 1 ⊢ ℝ ≈ 𝒫 ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3446 ⊆ wss 3913 𝒫 cpw 4565 class class class wbr 5110 × cxp 5636 (class class class)co 7362 ωcom 7807 2oc2o 8411 ↑m cmap 8772 ≈ cen 8887 ≼ cdom 8888 ≺ csdm 8889 ℝcr 11059 0cc0 11060 1c1 11061 ℕcn 12162 ℚcq 12882 [,]cicc 13277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9586 ax-cnex 11116 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 ax-pre-mulgt0 11137 ax-pre-sup 11138 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-oadd 8421 df-omul 8422 df-er 8655 df-map 8774 df-pm 8775 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9387 df-inf 9388 df-oi 9455 df-card 9884 df-acn 9887 df-pnf 11200 df-mnf 11201 df-xr 11202 df-ltxr 11203 df-le 11204 df-sub 11396 df-neg 11397 df-div 11822 df-nn 12163 df-2 12225 df-3 12226 df-n0 12423 df-z 12509 df-uz 12773 df-q 12883 df-rp 12925 df-ico 13280 df-icc 13281 df-fz 13435 df-fzo 13578 df-fl 13707 df-seq 13917 df-exp 13978 df-hash 14241 df-cj 14996 df-re 14997 df-im 14998 df-sqrt 15132 df-abs 15133 df-limsup 15365 df-clim 15382 df-rlim 15383 df-sum 15583 |
This theorem is referenced by: rexpen 16121 cpnnen 16122 rucALT 16123 cnso 16140 2ndcredom 22838 opnreen 24231 |
Copyright terms: Public domain | W3C validator |