Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lagsubg | Structured version Visualization version GIF version |
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
lagsubg | ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
2 | pwfi 8923 | . . . . . . 7 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
3 | 1, 2 | sylib 217 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin) |
4 | lagsubg.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
5 | eqid 2738 | . . . . . . . . 9 ⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) | |
6 | 4, 5 | eqger 18721 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋) |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋) |
8 | 7 | qsss 8525 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋) |
9 | 3, 8 | ssfid 8971 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin) |
10 | hashcl 13999 | . . . . 5 ⊢ ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) |
12 | 11 | nn0zd 12353 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ) |
13 | id 22 | . . . . . 6 ⊢ (𝑋 ∈ Fin → 𝑋 ∈ Fin) | |
14 | 4 | subgss 18671 | . . . . . 6 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
15 | ssfi 8918 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ Fin) | |
16 | 13, 14, 15 | syl2anr 596 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin) |
17 | hashcl 13999 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℕ0) |
19 | 18 | nn0zd 12353 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℤ) |
20 | dvdsmul2 15916 | . . 3 ⊢ (((♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (♯‘𝑌) ∈ ℤ) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) | |
21 | 12, 19, 20 | syl2anc 583 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) |
22 | simpl 482 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺)) | |
23 | 4, 5, 22, 1 | lagsubg2 18732 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) |
24 | 21, 23 | breqtrrd 5098 | 1 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Er wer 8453 / cqs 8455 Fincfn 8691 · cmul 10807 ℕ0cn0 12163 ℤcz 12249 ♯chash 13972 ∥ cdvds 15891 Basecbs 16840 SubGrpcsubg 18664 ~QG cqg 18666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-dvds 15892 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-eqg 18669 |
This theorem is referenced by: oddvds2 19088 fislw 19145 sylow3lem4 19150 ablfacrp2 19585 ablfac1c 19589 ablfac1eu 19591 prmgrpsimpgd 19632 |
Copyright terms: Public domain | W3C validator |