MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg Structured version   Visualization version   GIF version

Theorem lagsubg 19127
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
lagsubg ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋))

Proof of Theorem lagsubg
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 pwfi 9268 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 218 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
4 lagsubg.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
5 eqid 2729 . . . . . . . . 9 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
64, 5eqger 19110 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
76adantr 480 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋)
87qsss 8749 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋)
93, 8ssfid 9212 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin)
10 hashcl 14321 . . . . 5 ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
119, 10syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
1211nn0zd 12555 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ)
13 id 22 . . . . . 6 (𝑋 ∈ Fin → 𝑋 ∈ Fin)
144subgss 19059 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
15 ssfi 9137 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌𝑋) → 𝑌 ∈ Fin)
1613, 14, 15syl2anr 597 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin)
17 hashcl 14321 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1816, 17syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℕ0)
1918nn0zd 12555 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℤ)
20 dvdsmul2 16248 . . 3 (((♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (♯‘𝑌) ∈ ℤ) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
2112, 19, 20syl2anc 584 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
22 simpl 482 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺))
234, 5, 22, 1lagsubg2 19126 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
2421, 23breqtrrd 5135 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cfv 6511  (class class class)co 7387   Er wer 8668   / cqs 8670  Fincfn 8918   · cmul 11073  0cn0 12442  cz 12529  chash 14295  cdvds 16222  Basecbs 17179  SubGrpcsubg 19052   ~QG cqg 19054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-eqg 19057
This theorem is referenced by:  oddvds2  19496  fislw  19555  sylow3lem4  19560  ablfacrp2  19999  ablfac1c  20003  ablfac1eu  20005  prmgrpsimpgd  20046
  Copyright terms: Public domain W3C validator