|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lagsubg | Structured version Visualization version GIF version | ||
| Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) | 
| Ref | Expression | 
|---|---|
| lagsubg | ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
| 2 | pwfi 9357 | . . . . . . 7 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin) | 
| 4 | lagsubg.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
| 5 | eqid 2737 | . . . . . . . . 9 ⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) | |
| 6 | 4, 5 | eqger 19196 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋) | 
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋) | 
| 8 | 7 | qsss 8818 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋) | 
| 9 | 3, 8 | ssfid 9301 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin) | 
| 10 | hashcl 14395 | . . . . 5 ⊢ ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) | 
| 12 | 11 | nn0zd 12639 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ) | 
| 13 | id 22 | . . . . . 6 ⊢ (𝑋 ∈ Fin → 𝑋 ∈ Fin) | |
| 14 | 4 | subgss 19145 | . . . . . 6 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) | 
| 15 | ssfi 9213 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ Fin) | |
| 16 | 13, 14, 15 | syl2anr 597 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin) | 
| 17 | hashcl 14395 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℕ0) | 
| 19 | 18 | nn0zd 12639 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℤ) | 
| 20 | dvdsmul2 16316 | . . 3 ⊢ (((♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (♯‘𝑌) ∈ ℤ) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) | |
| 21 | 12, 19, 20 | syl2anc 584 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) | 
| 22 | simpl 482 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺)) | |
| 23 | 4, 5, 22, 1 | lagsubg2 19212 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) | 
| 24 | 21, 23 | breqtrrd 5171 | 1 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Er wer 8742 / cqs 8744 Fincfn 8985 · cmul 11160 ℕ0cn0 12526 ℤcz 12613 ♯chash 14369 ∥ cdvds 16290 Basecbs 17247 SubGrpcsubg 19138 ~QG cqg 19140 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-ec 8747 df-qs 8751 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-dvds 16291 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-eqg 19143 | 
| This theorem is referenced by: oddvds2 19584 fislw 19643 sylow3lem4 19648 ablfacrp2 20087 ablfac1c 20091 ablfac1eu 20093 prmgrpsimpgd 20134 | 
| Copyright terms: Public domain | W3C validator |