Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lagsubg | Structured version Visualization version GIF version |
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
lagsubg | ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
2 | pwfi 8856 | . . . . . . 7 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
3 | 1, 2 | sylib 221 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin) |
4 | lagsubg.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
5 | eqid 2737 | . . . . . . . . 9 ⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) | |
6 | 4, 5 | eqger 18594 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋) |
7 | 6 | adantr 484 | . . . . . . 7 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋) |
8 | 7 | qsss 8460 | . . . . . 6 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋) |
9 | 3, 8 | ssfid 8898 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin) |
10 | hashcl 13923 | . . . . 5 ⊢ ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0) |
12 | 11 | nn0zd 12280 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ) |
13 | id 22 | . . . . . 6 ⊢ (𝑋 ∈ Fin → 𝑋 ∈ Fin) | |
14 | 4 | subgss 18544 | . . . . . 6 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
15 | ssfi 8851 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ Fin) | |
16 | 13, 14, 15 | syl2anr 600 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin) |
17 | hashcl 13923 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℕ0) |
19 | 18 | nn0zd 12280 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℤ) |
20 | dvdsmul2 15840 | . . 3 ⊢ (((♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (♯‘𝑌) ∈ ℤ) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) | |
21 | 12, 19, 20 | syl2anc 587 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) |
22 | simpl 486 | . . 3 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺)) | |
23 | 4, 5, 22, 1 | lagsubg2 18605 | . 2 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌))) |
24 | 21, 23 | breqtrrd 5081 | 1 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Er wer 8388 / cqs 8390 Fincfn 8626 · cmul 10734 ℕ0cn0 12090 ℤcz 12176 ♯chash 13896 ∥ cdvds 15815 Basecbs 16760 SubGrpcsubg 18537 ~QG cqg 18539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-disj 5019 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-ec 8393 df-qs 8397 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-dvds 15816 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-subg 18540 df-eqg 18542 |
This theorem is referenced by: oddvds2 18957 fislw 19014 sylow3lem4 19019 ablfacrp2 19454 ablfac1c 19458 ablfac1eu 19460 prmgrpsimpgd 19501 |
Copyright terms: Public domain | W3C validator |