MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta2 Structured version   Visualization version   GIF version

Theorem orbsta2 19297
Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
orbsta2.x 𝑋 = (Base‘𝐺)
orbsta2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta2.r = (𝐺 ~QG 𝐻)
orbsta2.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Distinct variable groups:   𝑢,𝑔,𝑥,𝑦,   𝐴,𝑔,𝑢,𝑥,𝑦   𝑔,𝐺,𝑢,𝑥,𝑦   𝑔,𝑌,𝑥,𝑦   ,𝑔,𝑥,𝑦   𝑥,𝐻,𝑦   𝑔,𝑋,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐻(𝑢,𝑔)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 orbsta2.x . . 3 𝑋 = (Base‘𝐺)
2 orbsta2.r . . 3 = (𝐺 ~QG 𝐻)
3 orbsta2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
41, 3gastacl 19292 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
54adantr 480 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝐻 ∈ (SubGrp‘𝐺))
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
71, 2, 5, 6lagsubg2 19177 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝐻)))
8 pwfi 9329 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
96, 8sylib 218 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
101, 2eqger 19161 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
115, 10syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → Er 𝑋)
1211qsss 8792 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ⊆ 𝒫 𝑋)
139, 12ssfid 9273 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ∈ Fin)
14 eqid 2735 . . . . . 6 ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩) = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
15 orbsta2.o . . . . . 6 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 3, 2, 14, 15orbsta 19296 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1716adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1813, 17hasheqf1od 14371 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / )) = (♯‘[𝐴]𝑂))
1918oveq1d 7420 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ((♯‘(𝑋 / )) · (♯‘𝐻)) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
207, 19eqtrd 2770 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  wss 3926  𝒫 cpw 4575  {cpr 4603  cop 4607  {copab 5181  cmpt 5201  ran crn 5655  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405   Er wer 8716  [cec 8717   / cqs 8718  Fincfn 8959   · cmul 11134  chash 14348  Basecbs 17228  SubGrpcsubg 19103   ~QG cqg 19105   GrpAct cga 19272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-eqg 19108  df-ga 19273
This theorem is referenced by:  sylow1lem5  19583  sylow2alem2  19599  sylow3lem3  19610
  Copyright terms: Public domain W3C validator