MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta2 Structured version   Visualization version   GIF version

Theorem orbsta2 19332
Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
orbsta2.x 𝑋 = (Base‘𝐺)
orbsta2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta2.r = (𝐺 ~QG 𝐻)
orbsta2.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Distinct variable groups:   𝑢,𝑔,𝑥,𝑦,   𝐴,𝑔,𝑢,𝑥,𝑦   𝑔,𝐺,𝑢,𝑥,𝑦   𝑔,𝑌,𝑥,𝑦   ,𝑔,𝑥,𝑦   𝑥,𝐻,𝑦   𝑔,𝑋,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐻(𝑢,𝑔)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 orbsta2.x . . 3 𝑋 = (Base‘𝐺)
2 orbsta2.r . . 3 = (𝐺 ~QG 𝐻)
3 orbsta2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
41, 3gastacl 19327 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
54adantr 480 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝐻 ∈ (SubGrp‘𝐺))
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
71, 2, 5, 6lagsubg2 19212 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝐻)))
8 pwfi 9357 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
96, 8sylib 218 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
101, 2eqger 19196 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
115, 10syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → Er 𝑋)
1211qsss 8818 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ⊆ 𝒫 𝑋)
139, 12ssfid 9301 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ∈ Fin)
14 eqid 2737 . . . . . 6 ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩) = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
15 orbsta2.o . . . . . 6 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 3, 2, 14, 15orbsta 19331 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1716adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1813, 17hasheqf1od 14392 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / )) = (♯‘[𝐴]𝑂))
1918oveq1d 7446 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ((♯‘(𝑋 / )) · (♯‘𝐻)) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
207, 19eqtrd 2777 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  wss 3951  𝒫 cpw 4600  {cpr 4628  cop 4632  {copab 5205  cmpt 5225  ran crn 5686  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743   / cqs 8744  Fincfn 8985   · cmul 11160  chash 14369  Basecbs 17247  SubGrpcsubg 19138   ~QG cqg 19140   GrpAct cga 19307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-eqg 19143  df-ga 19308
This theorem is referenced by:  sylow1lem5  19620  sylow2alem2  19636  sylow3lem3  19647
  Copyright terms: Public domain W3C validator