MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta2 Structured version   Visualization version   GIF version

Theorem orbsta2 19220
Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
orbsta2.x 𝑋 = (Base‘𝐺)
orbsta2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta2.r = (𝐺 ~QG 𝐻)
orbsta2.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Distinct variable groups:   𝑢,𝑔,𝑥,𝑦,   𝐴,𝑔,𝑢,𝑥,𝑦   𝑔,𝐺,𝑢,𝑥,𝑦   𝑔,𝑌,𝑥,𝑦   ,𝑔,𝑥,𝑦   𝑥,𝐻,𝑦   𝑔,𝑋,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐻(𝑢,𝑔)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 orbsta2.x . . 3 𝑋 = (Base‘𝐺)
2 orbsta2.r . . 3 = (𝐺 ~QG 𝐻)
3 orbsta2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
41, 3gastacl 19215 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
54adantr 480 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝐻 ∈ (SubGrp‘𝐺))
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
71, 2, 5, 6lagsubg2 19110 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝐻)))
8 pwfi 9174 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
96, 8sylib 217 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
101, 2eqger 19095 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
115, 10syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → Er 𝑋)
1211qsss 8768 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ⊆ 𝒫 𝑋)
139, 12ssfid 9263 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ∈ Fin)
14 eqid 2724 . . . . . 6 ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩) = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
15 orbsta2.o . . . . . 6 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 3, 2, 14, 15orbsta 19219 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1716adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1813, 17hasheqf1od 14310 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / )) = (♯‘[𝐴]𝑂))
1918oveq1d 7416 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ((♯‘(𝑋 / )) · (♯‘𝐻)) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
207, 19eqtrd 2764 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3062  {crab 3424  wss 3940  𝒫 cpw 4594  {cpr 4622  cop 4626  {copab 5200  cmpt 5221  ran crn 5667  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401   Er wer 8696  [cec 8697   / cqs 8698  Fincfn 8935   · cmul 11111  chash 14287  Basecbs 17143  SubGrpcsubg 19037   ~QG cqg 19039   GrpAct cga 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-disj 5104  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-subg 19040  df-eqg 19042  df-ga 19196
This theorem is referenced by:  sylow1lem5  19512  sylow2alem2  19528  sylow3lem3  19539
  Copyright terms: Public domain W3C validator