MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta2 Structured version   Visualization version   GIF version

Theorem orbsta2 19228
Description: Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
orbsta2.x 𝑋 = (Base‘𝐺)
orbsta2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta2.r = (𝐺 ~QG 𝐻)
orbsta2.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
orbsta2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Distinct variable groups:   𝑢,𝑔,𝑥,𝑦,   𝐴,𝑔,𝑢,𝑥,𝑦   𝑔,𝐺,𝑢,𝑥,𝑦   𝑔,𝑌,𝑥,𝑦   ,𝑔,𝑥,𝑦   𝑥,𝐻,𝑦   𝑔,𝑋,𝑢,𝑥,𝑦
Allowed substitution hints:   (𝑢)   𝐻(𝑢,𝑔)   𝑂(𝑥,𝑦,𝑢,𝑔)   𝑌(𝑢)

Proof of Theorem orbsta2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 orbsta2.x . . 3 𝑋 = (Base‘𝐺)
2 orbsta2.r . . 3 = (𝐺 ~QG 𝐻)
3 orbsta2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
41, 3gastacl 19223 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
54adantr 480 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝐻 ∈ (SubGrp‘𝐺))
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
71, 2, 5, 6lagsubg2 19108 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝐻)))
8 pwfi 9210 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
96, 8sylib 218 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
101, 2eqger 19092 . . . . . . 7 (𝐻 ∈ (SubGrp‘𝐺) → Er 𝑋)
115, 10syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → Er 𝑋)
1211qsss 8706 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ⊆ 𝒫 𝑋)
139, 12ssfid 9160 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (𝑋 / ) ∈ Fin)
14 eqid 2733 . . . . . 6 ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩) = ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩)
15 orbsta2.o . . . . . 6 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 3, 2, 14, 15orbsta 19227 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1716adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ran (𝑘𝑋 ↦ ⟨[𝑘] , (𝑘 𝐴)⟩):(𝑋 / )–1-1-onto→[𝐴]𝑂)
1813, 17hasheqf1od 14262 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / )) = (♯‘[𝐴]𝑂))
1918oveq1d 7367 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → ((♯‘(𝑋 / )) · (♯‘𝐻)) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
207, 19eqtrd 2768 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  wss 3898  𝒫 cpw 4549  {cpr 4577  cop 4581  {copab 5155  cmpt 5174  ran crn 5620  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352   Er wer 8625  [cec 8626   / cqs 8627  Fincfn 8875   · cmul 11018  chash 14239  Basecbs 17122  SubGrpcsubg 19035   ~QG cqg 19037   GrpAct cga 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-subg 19038  df-eqg 19040  df-ga 19204
This theorem is referenced by:  sylow1lem5  19516  sylow2alem2  19532  sylow3lem3  19543
  Copyright terms: Public domain W3C validator