MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg2 Structured version   Visualization version   GIF version

Theorem lagsubg2 18333
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
lagsubg.2 = (𝐺 ~QG 𝑌)
lagsubg.3 (𝜑𝑌 ∈ (SubGrp‘𝐺))
lagsubg.4 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
lagsubg2 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))

Proof of Theorem lagsubg2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lagsubg.3 . . . 4 (𝜑𝑌 ∈ (SubGrp‘𝐺))
2 lagsubg.1 . . . . 5 𝑋 = (Base‘𝐺)
3 lagsubg.2 . . . . 5 = (𝐺 ~QG 𝑌)
42, 3eqger 18322 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
51, 4syl 17 . . 3 (𝜑 Er 𝑋)
6 lagsubg.4 . . 3 (𝜑𝑋 ∈ Fin)
75, 6qshash 15174 . 2 (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
82, 3eqgen 18325 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
91, 8sylan 583 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
102subgss 18272 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
111, 10syl 17 . . . . . . 7 (𝜑𝑌𝑋)
126, 11ssfid 8725 . . . . . 6 (𝜑𝑌 ∈ Fin)
1312adantr 484 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌 ∈ Fin)
146adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑋 ∈ Fin)
155qsss 8341 . . . . . . . 8 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
1615sselda 3915 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ 𝒫 𝑋)
1716elpwid 4508 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥𝑋)
1814, 17ssfid 8725 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ Fin)
19 hashen 13703 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
2013, 18, 19syl2anc 587 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
219, 20mpbird 260 . . 3 ((𝜑𝑥 ∈ (𝑋 / )) → (♯‘𝑌) = (♯‘𝑥))
2221sumeq2dv 15052 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
23 pwfi 8803 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
246, 23sylib 221 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
2524, 15ssfid 8725 . . 3 (𝜑 → (𝑋 / ) ∈ Fin)
26 hashcl 13713 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
2712, 26syl 17 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℕ0)
2827nn0cnd 11945 . . 3 (𝜑 → (♯‘𝑌) ∈ ℂ)
29 fsumconst 15137 . . 3 (((𝑋 / ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
3025, 28, 29syl2anc 587 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
317, 22, 303eqtr2d 2839 1 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cfv 6324  (class class class)co 7135   Er wer 8269   / cqs 8271  cen 8489  Fincfn 8492  cc 10524   · cmul 10531  0cn0 11885  chash 13686  Σcsu 15034  Basecbs 16475  SubGrpcsubg 18265   ~QG cqg 18267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-eqg 18270
This theorem is referenced by:  lagsubg  18334  orbsta2  18436  sylow2blem3  18739  sylow3lem3  18746  sylow3lem4  18747
  Copyright terms: Public domain W3C validator