MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg2 Structured version   Visualization version   GIF version

Theorem lagsubg2 18279
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
lagsubg.2 = (𝐺 ~QG 𝑌)
lagsubg.3 (𝜑𝑌 ∈ (SubGrp‘𝐺))
lagsubg.4 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
lagsubg2 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))

Proof of Theorem lagsubg2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lagsubg.3 . . . 4 (𝜑𝑌 ∈ (SubGrp‘𝐺))
2 lagsubg.1 . . . . 5 𝑋 = (Base‘𝐺)
3 lagsubg.2 . . . . 5 = (𝐺 ~QG 𝑌)
42, 3eqger 18268 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
51, 4syl 17 . . 3 (𝜑 Er 𝑋)
6 lagsubg.4 . . 3 (𝜑𝑋 ∈ Fin)
75, 6qshash 15170 . 2 (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
82, 3eqgen 18271 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
91, 8sylan 580 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
102subgss 18218 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
111, 10syl 17 . . . . . . 7 (𝜑𝑌𝑋)
126, 11ssfid 8729 . . . . . 6 (𝜑𝑌 ∈ Fin)
1312adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌 ∈ Fin)
146adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑋 ∈ Fin)
155qsss 8347 . . . . . . . 8 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
1615sselda 3964 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ 𝒫 𝑋)
1716elpwid 4549 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥𝑋)
1814, 17ssfid 8729 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ Fin)
19 hashen 13695 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
2013, 18, 19syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
219, 20mpbird 258 . . 3 ((𝜑𝑥 ∈ (𝑋 / )) → (♯‘𝑌) = (♯‘𝑥))
2221sumeq2dv 15048 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
23 pwfi 8807 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
246, 23sylib 219 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
2524, 15ssfid 8729 . . 3 (𝜑 → (𝑋 / ) ∈ Fin)
26 hashcl 13705 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
2712, 26syl 17 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℕ0)
2827nn0cnd 11945 . . 3 (𝜑 → (♯‘𝑌) ∈ ℂ)
29 fsumconst 15133 . . 3 (((𝑋 / ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
3025, 28, 29syl2anc 584 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
317, 22, 303eqtr2d 2859 1 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3933  𝒫 cpw 4535   class class class wbr 5057  cfv 6348  (class class class)co 7145   Er wer 8275   / cqs 8277  cen 8494  Fincfn 8497  cc 10523   · cmul 10530  0cn0 11885  chash 13678  Σcsu 15030  Basecbs 16471  SubGrpcsubg 18211   ~QG cqg 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-eqg 18216
This theorem is referenced by:  lagsubg  18280  orbsta2  18382  sylow2blem3  18676  sylow3lem3  18683  sylow3lem4  18684
  Copyright terms: Public domain W3C validator