MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg2 Structured version   Visualization version   GIF version

Theorem lagsubg2 18335
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
lagsubg.2 = (𝐺 ~QG 𝑌)
lagsubg.3 (𝜑𝑌 ∈ (SubGrp‘𝐺))
lagsubg.4 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
lagsubg2 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))

Proof of Theorem lagsubg2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lagsubg.3 . . . 4 (𝜑𝑌 ∈ (SubGrp‘𝐺))
2 lagsubg.1 . . . . 5 𝑋 = (Base‘𝐺)
3 lagsubg.2 . . . . 5 = (𝐺 ~QG 𝑌)
42, 3eqger 18324 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
51, 4syl 17 . . 3 (𝜑 Er 𝑋)
6 lagsubg.4 . . 3 (𝜑𝑋 ∈ Fin)
75, 6qshash 15176 . 2 (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
82, 3eqgen 18327 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
91, 8sylan 582 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
102subgss 18274 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
111, 10syl 17 . . . . . . 7 (𝜑𝑌𝑋)
126, 11ssfid 8735 . . . . . 6 (𝜑𝑌 ∈ Fin)
1312adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌 ∈ Fin)
146adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑋 ∈ Fin)
155qsss 8352 . . . . . . . 8 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
1615sselda 3967 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ 𝒫 𝑋)
1716elpwid 4553 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥𝑋)
1814, 17ssfid 8735 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ Fin)
19 hashen 13701 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
2013, 18, 19syl2anc 586 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
219, 20mpbird 259 . . 3 ((𝜑𝑥 ∈ (𝑋 / )) → (♯‘𝑌) = (♯‘𝑥))
2221sumeq2dv 15054 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
23 pwfi 8813 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
246, 23sylib 220 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
2524, 15ssfid 8735 . . 3 (𝜑 → (𝑋 / ) ∈ Fin)
26 hashcl 13711 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
2712, 26syl 17 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℕ0)
2827nn0cnd 11951 . . 3 (𝜑 → (♯‘𝑌) ∈ ℂ)
29 fsumconst 15139 . . 3 (((𝑋 / ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
3025, 28, 29syl2anc 586 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
317, 22, 303eqtr2d 2862 1 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3936  𝒫 cpw 4539   class class class wbr 5059  cfv 6350  (class class class)co 7150   Er wer 8280   / cqs 8282  cen 8500  Fincfn 8503  cc 10529   · cmul 10536  0cn0 11891  chash 13684  Σcsu 15036  Basecbs 16477  SubGrpcsubg 18267   ~QG cqg 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-eqg 18272
This theorem is referenced by:  lagsubg  18336  orbsta2  18438  sylow2blem3  18741  sylow3lem3  18748  sylow3lem4  18749
  Copyright terms: Public domain W3C validator