MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg2 Structured version   Visualization version   GIF version

Theorem lagsubg2 17856
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
lagsubg.2 = (𝐺 ~QG 𝑌)
lagsubg.3 (𝜑𝑌 ∈ (SubGrp‘𝐺))
lagsubg.4 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
lagsubg2 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))

Proof of Theorem lagsubg2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lagsubg.3 . . . 4 (𝜑𝑌 ∈ (SubGrp‘𝐺))
2 lagsubg.1 . . . . 5 𝑋 = (Base‘𝐺)
3 lagsubg.2 . . . . 5 = (𝐺 ~QG 𝑌)
42, 3eqger 17845 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
51, 4syl 17 . . 3 (𝜑 Er 𝑋)
6 lagsubg.4 . . 3 (𝜑𝑋 ∈ Fin)
75, 6qshash 14759 . 2 (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
82, 3eqgen 17848 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
91, 8sylan 569 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
102subgss 17796 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
111, 10syl 17 . . . . . . 7 (𝜑𝑌𝑋)
12 ssfi 8334 . . . . . . 7 ((𝑋 ∈ Fin ∧ 𝑌𝑋) → 𝑌 ∈ Fin)
136, 11, 12syl2anc 573 . . . . . 6 (𝜑𝑌 ∈ Fin)
1413adantr 466 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌 ∈ Fin)
156adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑋 ∈ Fin)
165qsss 7958 . . . . . . . 8 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
1716sselda 3752 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ 𝒫 𝑋)
1817elpwid 4309 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥𝑋)
19 ssfi 8334 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑥𝑋) → 𝑥 ∈ Fin)
2015, 18, 19syl2anc 573 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ Fin)
21 hashen 13332 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
2214, 20, 21syl2anc 573 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
239, 22mpbird 247 . . 3 ((𝜑𝑥 ∈ (𝑋 / )) → (♯‘𝑌) = (♯‘𝑥))
2423sumeq2dv 14634 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
25 pwfi 8415 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
266, 25sylib 208 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
27 ssfi 8334 . . . 4 ((𝒫 𝑋 ∈ Fin ∧ (𝑋 / ) ⊆ 𝒫 𝑋) → (𝑋 / ) ∈ Fin)
2826, 16, 27syl2anc 573 . . 3 (𝜑 → (𝑋 / ) ∈ Fin)
29 hashcl 13342 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
3013, 29syl 17 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℕ0)
3130nn0cnd 11553 . . 3 (𝜑 → (♯‘𝑌) ∈ ℂ)
32 fsumconst 14722 . . 3 (((𝑋 / ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
3328, 31, 32syl2anc 573 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
347, 24, 333eqtr2d 2811 1 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wss 3723  𝒫 cpw 4297   class class class wbr 4786  cfv 6029  (class class class)co 6791   Er wer 7891   / cqs 7893  cen 8104  Fincfn 8107  cc 10134   · cmul 10141  0cn0 11492  chash 13314  Σcsu 14617  Basecbs 16057  SubGrpcsubg 17789   ~QG cqg 17791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-ec 7896  df-qs 7900  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-0g 16303  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-subg 17792  df-eqg 17794
This theorem is referenced by:  lagsubg  17857  orbsta2  17947  sylow2blem3  18237  sylow3lem3  18244  sylow3lem4  18245
  Copyright terms: Public domain W3C validator