Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lagsubg2 | Structured version Visualization version GIF version |
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) |
lagsubg.2 | ⊢ ∼ = (𝐺 ~QG 𝑌) |
lagsubg.3 | ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) |
lagsubg.4 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
lagsubg2 | ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lagsubg.3 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) | |
2 | lagsubg.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | lagsubg.2 | . . . . 5 ⊢ ∼ = (𝐺 ~QG 𝑌) | |
4 | 2, 3 | eqger 18806 | . . . 4 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → ∼ Er 𝑋) |
6 | lagsubg.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | 5, 6 | qshash 15539 | . 2 ⊢ (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
8 | 2, 3 | eqgen 18809 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
10 | 2 | subgss 18756 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
12 | 6, 11 | ssfid 9042 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ∈ Fin) |
14 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑋 ∈ Fin) |
15 | 5 | qsss 8567 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 / ∼ ) ⊆ 𝒫 𝑋) |
16 | 15 | sselda 3921 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ 𝒫 𝑋) |
17 | 16 | elpwid 4544 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ⊆ 𝑋) |
18 | 14, 17 | ssfid 9042 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ Fin) |
19 | hashen 14061 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) | |
20 | 13, 18, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) |
21 | 9, 20 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → (♯‘𝑌) = (♯‘𝑥)) |
22 | 21 | sumeq2dv 15415 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
23 | pwfi 8961 | . . . . 5 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
24 | 6, 23 | sylib 217 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
25 | 24, 15 | ssfid 9042 | . . 3 ⊢ (𝜑 → (𝑋 / ∼ ) ∈ Fin) |
26 | hashcl 14071 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
27 | 12, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝑌) ∈ ℕ0) |
28 | 27 | nn0cnd 12295 | . . 3 ⊢ (𝜑 → (♯‘𝑌) ∈ ℂ) |
29 | fsumconst 15502 | . . 3 ⊢ (((𝑋 / ∼ ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) | |
30 | 25, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
31 | 7, 22, 30 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Er wer 8495 / cqs 8497 ≈ cen 8730 Fincfn 8733 ℂcc 10869 · cmul 10876 ℕ0cn0 12233 ♯chash 14044 Σcsu 15397 Basecbs 16912 SubGrpcsubg 18749 ~QG cqg 18751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ec 8500 df-qs 8504 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-eqg 18754 |
This theorem is referenced by: lagsubg 18818 orbsta2 18920 sylow2blem3 19227 sylow3lem3 19234 sylow3lem4 19235 |
Copyright terms: Public domain | W3C validator |