![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lagsubg2 | Structured version Visualization version GIF version |
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) |
lagsubg.2 | ⊢ ∼ = (𝐺 ~QG 𝑌) |
lagsubg.3 | ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) |
lagsubg.4 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
lagsubg2 | ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lagsubg.3 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) | |
2 | lagsubg.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | lagsubg.2 | . . . . 5 ⊢ ∼ = (𝐺 ~QG 𝑌) | |
4 | 2, 3 | eqger 18028 | . . . 4 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → ∼ Er 𝑋) |
6 | lagsubg.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | 5, 6 | qshash 14963 | . 2 ⊢ (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
8 | 2, 3 | eqgen 18031 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
9 | 1, 8 | sylan 575 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
10 | 2 | subgss 17979 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
12 | 6, 11 | ssfid 8471 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ∈ Fin) |
14 | 6 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑋 ∈ Fin) |
15 | 5 | qsss 8091 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 / ∼ ) ⊆ 𝒫 𝑋) |
16 | 15 | sselda 3821 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ 𝒫 𝑋) |
17 | 16 | elpwid 4391 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ⊆ 𝑋) |
18 | 14, 17 | ssfid 8471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ Fin) |
19 | hashen 13452 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) | |
20 | 13, 18, 19 | syl2anc 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) |
21 | 9, 20 | mpbird 249 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → (♯‘𝑌) = (♯‘𝑥)) |
22 | 21 | sumeq2dv 14841 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
23 | pwfi 8549 | . . . . 5 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
24 | 6, 23 | sylib 210 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
25 | 24, 15 | ssfid 8471 | . . 3 ⊢ (𝜑 → (𝑋 / ∼ ) ∈ Fin) |
26 | hashcl 13462 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
27 | 12, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝑌) ∈ ℕ0) |
28 | 27 | nn0cnd 11704 | . . 3 ⊢ (𝜑 → (♯‘𝑌) ∈ ℂ) |
29 | fsumconst 14926 | . . 3 ⊢ (((𝑋 / ∼ ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) | |
30 | 25, 28, 29 | syl2anc 579 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
31 | 7, 22, 30 | 3eqtr2d 2820 | 1 ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 𝒫 cpw 4379 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Er wer 8023 / cqs 8025 ≈ cen 8238 Fincfn 8241 ℂcc 10270 · cmul 10277 ℕ0cn0 11642 ♯chash 13435 Σcsu 14824 Basecbs 16255 SubGrpcsubg 17972 ~QG cqg 17974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-disj 4855 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-ec 8028 df-qs 8032 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-minusg 17813 df-subg 17975 df-eqg 17977 |
This theorem is referenced by: lagsubg 18040 orbsta2 18130 sylow2blem3 18421 sylow3lem3 18428 sylow3lem4 18429 |
Copyright terms: Public domain | W3C validator |