| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lagsubg2 | Structured version Visualization version GIF version | ||
| Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| lagsubg.1 | ⊢ 𝑋 = (Base‘𝐺) |
| lagsubg.2 | ⊢ ∼ = (𝐺 ~QG 𝑌) |
| lagsubg.3 | ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) |
| lagsubg.4 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| lagsubg2 | ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lagsubg.3 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) | |
| 2 | lagsubg.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | lagsubg.2 | . . . . 5 ⊢ ∼ = (𝐺 ~QG 𝑌) | |
| 4 | 2, 3 | eqger 19057 | . . . 4 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → ∼ Er 𝑋) |
| 6 | lagsubg.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 7 | 5, 6 | qshash 15734 | . 2 ⊢ (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
| 8 | 2, 3 | eqgen 19060 | . . . . 5 ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
| 9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝑥) |
| 10 | 2 | subgss 19006 | . . . . . . . 8 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
| 11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 12 | 6, 11 | ssfid 9158 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑌 ∈ Fin) |
| 14 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑋 ∈ Fin) |
| 15 | 5 | qsss 8703 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 / ∼ ) ⊆ 𝒫 𝑋) |
| 16 | 15 | sselda 3935 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ 𝒫 𝑋) |
| 17 | 16 | elpwid 4560 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ⊆ 𝑋) |
| 18 | 14, 17 | ssfid 9158 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → 𝑥 ∈ Fin) |
| 19 | hashen 14254 | . . . . 5 ⊢ ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) | |
| 20 | 13, 18, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌 ≈ 𝑥)) |
| 21 | 9, 20 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 / ∼ )) → (♯‘𝑌) = (♯‘𝑥)) |
| 22 | 21 | sumeq2dv 15609 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑥)) |
| 23 | pwfi 9208 | . . . . 5 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
| 24 | 6, 23 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
| 25 | 24, 15 | ssfid 9158 | . . 3 ⊢ (𝜑 → (𝑋 / ∼ ) ∈ Fin) |
| 26 | hashcl 14263 | . . . . 5 ⊢ (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0) | |
| 27 | 12, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝑌) ∈ ℕ0) |
| 28 | 27 | nn0cnd 12447 | . . 3 ⊢ (𝜑 → (♯‘𝑌) ∈ ℂ) |
| 29 | fsumconst 15697 | . . 3 ⊢ (((𝑋 / ∼ ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) | |
| 30 | 25, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ (𝑋 / ∼ )(♯‘𝑌) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
| 31 | 7, 22, 30 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Er wer 8622 / cqs 8624 ≈ cen 8869 Fincfn 8872 ℂcc 11007 · cmul 11014 ℕ0cn0 12384 ♯chash 14237 Σcsu 15593 Basecbs 17120 SubGrpcsubg 18999 ~QG cqg 19001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-subg 19002 df-eqg 19004 |
| This theorem is referenced by: lagsubg 19074 orbsta2 19193 sylow2blem3 19501 sylow3lem3 19508 sylow3lem4 19509 |
| Copyright terms: Public domain | W3C validator |