MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg2 Structured version   Visualization version   GIF version

Theorem lagsubg2 18944
Description: Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
lagsubg.2 = (𝐺 ~QG 𝑌)
lagsubg.3 (𝜑𝑌 ∈ (SubGrp‘𝐺))
lagsubg.4 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
lagsubg2 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))

Proof of Theorem lagsubg2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lagsubg.3 . . . 4 (𝜑𝑌 ∈ (SubGrp‘𝐺))
2 lagsubg.1 . . . . 5 𝑋 = (Base‘𝐺)
3 lagsubg.2 . . . . 5 = (𝐺 ~QG 𝑌)
42, 3eqger 18933 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
51, 4syl 17 . . 3 (𝜑 Er 𝑋)
6 lagsubg.4 . . 3 (𝜑𝑋 ∈ Fin)
75, 6qshash 15666 . 2 (𝜑 → (♯‘𝑋) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
82, 3eqgen 18936 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
91, 8sylan 580 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌𝑥)
102subgss 18882 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
111, 10syl 17 . . . . . . 7 (𝜑𝑌𝑋)
126, 11ssfid 9169 . . . . . 6 (𝜑𝑌 ∈ Fin)
1312adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑌 ∈ Fin)
146adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑋 ∈ Fin)
155qsss 8675 . . . . . . . 8 (𝜑 → (𝑋 / ) ⊆ 𝒫 𝑋)
1615sselda 3942 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ 𝒫 𝑋)
1716elpwid 4567 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥𝑋)
1814, 17ssfid 9169 . . . . 5 ((𝜑𝑥 ∈ (𝑋 / )) → 𝑥 ∈ Fin)
19 hashen 14201 . . . . 5 ((𝑌 ∈ Fin ∧ 𝑥 ∈ Fin) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
2013, 18, 19syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝑋 / )) → ((♯‘𝑌) = (♯‘𝑥) ↔ 𝑌𝑥))
219, 20mpbird 256 . . 3 ((𝜑𝑥 ∈ (𝑋 / )) → (♯‘𝑌) = (♯‘𝑥))
2221sumeq2dv 15542 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = Σ𝑥 ∈ (𝑋 / )(♯‘𝑥))
23 pwfi 9080 . . . . 5 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
246, 23sylib 217 . . . 4 (𝜑 → 𝒫 𝑋 ∈ Fin)
2524, 15ssfid 9169 . . 3 (𝜑 → (𝑋 / ) ∈ Fin)
26 hashcl 14210 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
2712, 26syl 17 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℕ0)
2827nn0cnd 12433 . . 3 (𝜑 → (♯‘𝑌) ∈ ℂ)
29 fsumconst 15629 . . 3 (((𝑋 / ) ∈ Fin ∧ (♯‘𝑌) ∈ ℂ) → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
3025, 28, 29syl2anc 584 . 2 (𝜑 → Σ𝑥 ∈ (𝑋 / )(♯‘𝑌) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
317, 22, 303eqtr2d 2782 1 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / )) · (♯‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3908  𝒫 cpw 4558   class class class wbr 5103  cfv 6493  (class class class)co 7351   Er wer 8603   / cqs 8605  cen 8838  Fincfn 8841  cc 11007   · cmul 11014  0cn0 12371  chash 14184  Σcsu 15524  Basecbs 17037  SubGrpcsubg 18875   ~QG cqg 18877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-ec 8608  df-qs 8612  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fz 13379  df-fzo 13522  df-seq 13861  df-exp 13922  df-hash 14185  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-clim 15324  df-sum 15525  df-sets 16990  df-slot 17008  df-ndx 17020  df-base 17038  df-ress 17067  df-plusg 17100  df-0g 17277  df-mgm 18451  df-sgrp 18500  df-mnd 18511  df-grp 18705  df-minusg 18706  df-subg 18878  df-eqg 18880
This theorem is referenced by:  lagsubg  18945  orbsta2  19047  sylow2blem3  19357  sylow3lem3  19364  sylow3lem4  19365
  Copyright terms: Public domain W3C validator