MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qerclwwlknfi Structured version   Visualization version   GIF version

Theorem qerclwwlknfi 28187
Description: The quotient set of the set of closed walks (defined as words) with a fixed length according to the equivalence relation is finite. (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
qerclwwlknfi ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ∈ Fin)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡,𝑛)

Proof of Theorem qerclwwlknfi
StepHypRef Expression
1 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
2 clwwlknfi 28159 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 ClWWalksN 𝐺) ∈ Fin)
31, 2eqeltrid 2844 . . 3 ((Vtx‘𝐺) ∈ Fin → 𝑊 ∈ Fin)
4 pwfi 8881 . . 3 (𝑊 ∈ Fin ↔ 𝒫 𝑊 ∈ Fin)
53, 4sylib 221 . 2 ((Vtx‘𝐺) ∈ Fin → 𝒫 𝑊 ∈ Fin)
6 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
71, 6erclwwlkn 28186 . . . 4 Er 𝑊
87a1i 11 . . 3 ((Vtx‘𝐺) ∈ Fin → Er 𝑊)
98qsss 8483 . 2 ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ⊆ 𝒫 𝑊)
105, 9ssfid 8927 1 ((Vtx‘𝐺) ∈ Fin → (𝑊 / ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2112  wrex 3065  𝒫 cpw 4529  {copab 5131  cfv 6400  (class class class)co 7234   Er wer 8411   / cqs 8413  Fincfn 8649  0cc0 10758  ...cfz 13124   cyclShift ccsh 14385  Vtxcvtx 27118   ClWWalksN cclwwlkn 28138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835  ax-pre-sup 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-oadd 8229  df-er 8414  df-ec 8416  df-qs 8420  df-map 8533  df-pm 8534  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-sup 9087  df-inf 9088  df-dju 9546  df-card 9584  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-div 11519  df-nn 11860  df-2 11922  df-n0 12120  df-xnn0 12192  df-z 12206  df-uz 12468  df-rp 12616  df-fz 13125  df-fzo 13268  df-fl 13396  df-mod 13474  df-seq 13606  df-exp 13667  df-hash 13929  df-word 14102  df-concat 14158  df-substr 14238  df-pfx 14268  df-csh 14386  df-clwwlk 28096  df-clwwlkn 28139
This theorem is referenced by:  fusgrhashclwwlkn  28193  clwwlkndivn  28194
  Copyright terms: Public domain W3C validator