MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrest Structured version   Visualization version   GIF version

Theorem ssrest 23112
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))

Proof of Theorem ssrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐽t 𝐴))
2 ssrexv 4028 . . . . . 6 (𝐽𝐾 → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
32ad2antlr 727 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
4 n0i 4315 . . . . . . . 8 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
5 restfn 17436 . . . . . . . . . 10 t Fn (V × V)
65fndmi 6641 . . . . . . . . 9 dom ↾t = (V × V)
76ndmov 7589 . . . . . . . 8 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
84, 7nsyl2 141 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
98adantl 481 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
10 elrest 17439 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
119, 10syl 17 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
12 simpll 766 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐾𝑉)
139simprd 495 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐴 ∈ V)
14 elrest 17439 . . . . . 6 ((𝐾𝑉𝐴 ∈ V) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
1512, 13, 14syl2anc 584 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
163, 11, 153imtr4d 294 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
171, 16mpd 15 . . 3 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐾t 𝐴))
1817ex 412 . 2 ((𝐾𝑉𝐽𝐾) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
1918ssrdv 3964 1 ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308   × cxp 5652  (class class class)co 7403  t crest 17432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-rest 17434
This theorem is referenced by:  1stcrest  23389  kgencmp  23481  kgencmp2  23482  kgen2ss  23491  ssufl  23854  cnfsmf  46717  smfsssmf  46720
  Copyright terms: Public domain W3C validator