| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrest | Structured version Visualization version GIF version | ||
| Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| ssrest | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
| 2 | ssrexv 4000 | . . . . . 6 ⊢ (𝐽 ⊆ 𝐾 → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
| 3 | 2 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
| 4 | n0i 4289 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
| 5 | restfn 17330 | . . . . . . . . . 10 ⊢ ↾t Fn (V × V) | |
| 6 | 5 | fndmi 6590 | . . . . . . . . 9 ⊢ dom ↾t = (V × V) |
| 7 | 6 | ndmov 7536 | . . . . . . . 8 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 8 | 4, 7 | nsyl2 141 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| 10 | elrest 17333 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
| 12 | simpll 766 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐾 ∈ 𝑉) | |
| 13 | 9 | simprd 495 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ V) |
| 14 | elrest 17333 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
| 16 | 3, 11, 15 | 3imtr4d 294 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
| 17 | 1, 16 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐾 ↾t 𝐴)) |
| 18 | 17 | ex 412 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
| 19 | 18 | ssrdv 3936 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 × cxp 5617 (class class class)co 7352 ↾t crest 17326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-rest 17328 |
| This theorem is referenced by: 1stcrest 23369 kgencmp 23461 kgencmp2 23462 kgen2ss 23471 ssufl 23834 cnfsmf 46862 smfsssmf 46865 |
| Copyright terms: Public domain | W3C validator |