MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrest Structured version   Visualization version   GIF version

Theorem ssrest 22235
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))

Proof of Theorem ssrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐽t 𝐴))
2 ssrexv 3984 . . . . . 6 (𝐽𝐾 → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
32ad2antlr 723 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
4 n0i 4264 . . . . . . . 8 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
5 restfn 17052 . . . . . . . . . 10 t Fn (V × V)
65fndmi 6521 . . . . . . . . 9 dom ↾t = (V × V)
76ndmov 7434 . . . . . . . 8 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
84, 7nsyl2 141 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
98adantl 481 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
10 elrest 17055 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
119, 10syl 17 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
12 simpll 763 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐾𝑉)
139simprd 495 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐴 ∈ V)
14 elrest 17055 . . . . . 6 ((𝐾𝑉𝐴 ∈ V) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
1512, 13, 14syl2anc 583 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
163, 11, 153imtr4d 293 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
171, 16mpd 15 . . 3 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐾t 𝐴))
1817ex 412 . 2 ((𝐾𝑉𝐽𝐾) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
1918ssrdv 3923 1 ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253   × cxp 5578  (class class class)co 7255  t crest 17048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050
This theorem is referenced by:  1stcrest  22512  kgencmp  22604  kgencmp2  22605  kgen2ss  22614  ssufl  22977  cnfsmf  44163  smfsssmf  44166
  Copyright terms: Public domain W3C validator