MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrest Structured version   Visualization version   GIF version

Theorem ssrest 23070
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))

Proof of Theorem ssrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐽t 𝐴))
2 ssrexv 4019 . . . . . 6 (𝐽𝐾 → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
32ad2antlr 727 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
4 n0i 4306 . . . . . . . 8 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
5 restfn 17394 . . . . . . . . . 10 t Fn (V × V)
65fndmi 6625 . . . . . . . . 9 dom ↾t = (V × V)
76ndmov 7576 . . . . . . . 8 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
84, 7nsyl2 141 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
98adantl 481 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
10 elrest 17397 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
119, 10syl 17 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
12 simpll 766 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐾𝑉)
139simprd 495 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐴 ∈ V)
14 elrest 17397 . . . . . 6 ((𝐾𝑉𝐴 ∈ V) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
1512, 13, 14syl2anc 584 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
163, 11, 153imtr4d 294 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
171, 16mpd 15 . . 3 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐾t 𝐴))
1817ex 412 . 2 ((𝐾𝑉𝐽𝐾) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
1918ssrdv 3955 1 ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299   × cxp 5639  (class class class)co 7390  t crest 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rest 17392
This theorem is referenced by:  1stcrest  23347  kgencmp  23439  kgencmp2  23440  kgen2ss  23449  ssufl  23812  cnfsmf  46745  smfsssmf  46748
  Copyright terms: Public domain W3C validator