MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrest Structured version   Visualization version   GIF version

Theorem ssrest 23092
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))

Proof of Theorem ssrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐽t 𝐴))
2 ssrexv 4000 . . . . . 6 (𝐽𝐾 → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
32ad2antlr 727 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (∃𝑦𝐽 𝑥 = (𝑦𝐴) → ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
4 n0i 4289 . . . . . . . 8 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
5 restfn 17330 . . . . . . . . . 10 t Fn (V × V)
65fndmi 6590 . . . . . . . . 9 dom ↾t = (V × V)
76ndmov 7536 . . . . . . . 8 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
84, 7nsyl2 141 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
98adantl 481 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
10 elrest 17333 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
119, 10syl 17 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
12 simpll 766 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐾𝑉)
139simprd 495 . . . . . 6 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝐴 ∈ V)
14 elrest 17333 . . . . . 6 ((𝐾𝑉𝐴 ∈ V) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
1512, 13, 14syl2anc 584 . . . . 5 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐾t 𝐴) ↔ ∃𝑦𝐾 𝑥 = (𝑦𝐴)))
163, 11, 153imtr4d 294 . . . 4 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
171, 16mpd 15 . . 3 (((𝐾𝑉𝐽𝐾) ∧ 𝑥 ∈ (𝐽t 𝐴)) → 𝑥 ∈ (𝐾t 𝐴))
1817ex 412 . 2 ((𝐾𝑉𝐽𝐾) → (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ (𝐾t 𝐴)))
1918ssrdv 3936 1 ((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  cin 3897  wss 3898  c0 4282   × cxp 5617  (class class class)co 7352  t crest 17326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-rest 17328
This theorem is referenced by:  1stcrest  23369  kgencmp  23461  kgencmp2  23462  kgen2ss  23471  ssufl  23834  cnfsmf  46862  smfsssmf  46865
  Copyright terms: Public domain W3C validator