Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrest | Structured version Visualization version GIF version |
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
ssrest | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
2 | ssrexv 3988 | . . . . . 6 ⊢ (𝐽 ⊆ 𝐾 → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 2 | ad2antlr 724 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
4 | n0i 4267 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
5 | restfn 17135 | . . . . . . . . . 10 ⊢ ↾t Fn (V × V) | |
6 | 5 | fndmi 6537 | . . . . . . . . 9 ⊢ dom ↾t = (V × V) |
7 | 6 | ndmov 7456 | . . . . . . . 8 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
8 | 4, 7 | nsyl2 141 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
9 | 8 | adantl 482 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
10 | elrest 17138 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
12 | simpll 764 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐾 ∈ 𝑉) | |
13 | 9 | simprd 496 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ V) |
14 | elrest 17138 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
15 | 12, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
16 | 3, 11, 15 | 3imtr4d 294 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
17 | 1, 16 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐾 ↾t 𝐴)) |
18 | 17 | ex 413 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
19 | 18 | ssrdv 3927 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 × cxp 5587 (class class class)co 7275 ↾t crest 17131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-rest 17133 |
This theorem is referenced by: 1stcrest 22604 kgencmp 22696 kgencmp2 22697 kgen2ss 22706 ssufl 23069 cnfsmf 44276 smfsssmf 44279 |
Copyright terms: Public domain | W3C validator |