MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsspw Structured version   Visualization version   GIF version

Theorem restsspw 17410
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4327 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
2 restfn 17403 . . . . . . . . 9 t Fn (V × V)
3 fndm 6650 . . . . . . . . 9 ( ↾t Fn (V × V) → dom ↾t = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↾t = (V × V)
54ndmov 7600 . . . . . . 7 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
61, 5nsyl2 141 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
7 elrest 17406 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
86, 7syl 17 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
98ibi 266 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
10 inss2 4222 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
11 sseq1 3997 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1210, 11mpbiri 257 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1312rexlimivw 3141 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
149, 13syl 17 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
15 velpw 4601 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1614, 15sylibr 233 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1716ssriv 3976 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3060  Vcvv 3463  cin 3938  wss 3939  c0 4316  𝒫 cpw 4596   × cxp 5668  dom cdm 5670   Fn wfn 6536  (class class class)co 7414  t crest 17399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7989  df-2nd 7990  df-rest 17401
This theorem is referenced by:  1stckgenlem  23473  prdstopn  23548  trfbas2  23763  trfil1  23806  trfil2  23807  fgtr  23810  trust  24150  zdis  24748  cnambfre  37170  dvdmsscn  45359  dvnmptconst  45364  dvnxpaek  45365  dvnmul  45366  dvnprodlem3  45371
  Copyright terms: Public domain W3C validator