MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsspw Structured version   Visualization version   GIF version

Theorem restsspw 17142
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
2 restfn 17135 . . . . . . . . 9 t Fn (V × V)
3 fndm 6536 . . . . . . . . 9 ( ↾t Fn (V × V) → dom ↾t = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↾t = (V × V)
54ndmov 7456 . . . . . . 7 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
61, 5nsyl2 141 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
7 elrest 17138 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
86, 7syl 17 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
98ibi 266 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
10 inss2 4163 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
11 sseq1 3946 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1210, 11mpbiri 257 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1312rexlimivw 3211 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
149, 13syl 17 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
15 velpw 4538 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1614, 15sylibr 233 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1716ssriv 3925 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   × cxp 5587  dom cdm 5589   Fn wfn 6428  (class class class)co 7275  t crest 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-rest 17133
This theorem is referenced by:  1stckgenlem  22704  prdstopn  22779  trfbas2  22994  trfil1  23037  trfil2  23038  fgtr  23041  trust  23381  zdis  23979  cnambfre  35825  dvdmsscn  43477  dvnmptconst  43482  dvnxpaek  43483  dvnmul  43484  dvnprodlem3  43489
  Copyright terms: Public domain W3C validator