![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restsspw | Structured version Visualization version GIF version |
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restsspw | ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4327 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
2 | restfn 17403 | . . . . . . . . 9 ⊢ ↾t Fn (V × V) | |
3 | fndm 6650 | . . . . . . . . 9 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ dom ↾t = (V × V) |
5 | 4 | ndmov 7600 | . . . . . . 7 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
6 | 1, 5 | nsyl2 141 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
7 | elrest 17406 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
9 | 8 | ibi 266 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴)) |
10 | inss2 4222 | . . . . . 6 ⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 | |
11 | sseq1 3997 | . . . . . 6 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) | |
12 | 10, 11 | mpbiri 257 | . . . . 5 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
13 | 12 | rexlimivw 3141 | . . . 4 ⊢ (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
14 | 9, 13 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ⊆ 𝐴) |
15 | velpw 4601 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
17 | 16 | ssriv 3976 | 1 ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 Vcvv 3463 ∩ cin 3938 ⊆ wss 3939 ∅c0 4316 𝒫 cpw 4596 × cxp 5668 dom cdm 5670 Fn wfn 6536 (class class class)co 7414 ↾t crest 17399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7989 df-2nd 7990 df-rest 17401 |
This theorem is referenced by: 1stckgenlem 23473 prdstopn 23548 trfbas2 23763 trfil1 23806 trfil2 23807 fgtr 23810 trust 24150 zdis 24748 cnambfre 37170 dvdmsscn 45359 dvnmptconst 45364 dvnxpaek 45365 dvnmul 45366 dvnprodlem3 45371 |
Copyright terms: Public domain | W3C validator |