| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restsspw | Structured version Visualization version GIF version | ||
| Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restsspw | ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4306 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
| 2 | restfn 17394 | . . . . . . . . 9 ⊢ ↾t Fn (V × V) | |
| 3 | fndm 6624 | . . . . . . . . 9 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ dom ↾t = (V × V) |
| 5 | 4 | ndmov 7576 | . . . . . . 7 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 6 | 1, 5 | nsyl2 141 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| 7 | elrest 17397 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
| 9 | 8 | ibi 267 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴)) |
| 10 | inss2 4204 | . . . . . 6 ⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 | |
| 11 | sseq1 3975 | . . . . . 6 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | rexlimivw 3131 | . . . 4 ⊢ (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 14 | 9, 13 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ⊆ 𝐴) |
| 15 | velpw 4571 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
| 17 | 16 | ssriv 3953 | 1 ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 × cxp 5639 dom cdm 5641 Fn wfn 6509 (class class class)co 7390 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-rest 17392 |
| This theorem is referenced by: 1stckgenlem 23447 prdstopn 23522 trfbas2 23737 trfil1 23780 trfil2 23781 fgtr 23784 trust 24124 zdis 24712 cnambfre 37669 dvdmsscn 45941 dvnmptconst 45946 dvnxpaek 45947 dvnmul 45948 dvnprodlem3 45953 |
| Copyright terms: Public domain | W3C validator |