MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsspw Structured version   Visualization version   GIF version

Theorem restsspw 17335
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4290 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
2 restfn 17328 . . . . . . . . 9 t Fn (V × V)
3 fndm 6584 . . . . . . . . 9 ( ↾t Fn (V × V) → dom ↾t = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↾t = (V × V)
54ndmov 7530 . . . . . . 7 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
61, 5nsyl2 141 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
7 elrest 17331 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
86, 7syl 17 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
98ibi 267 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
10 inss2 4188 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
11 sseq1 3960 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1210, 11mpbiri 258 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1312rexlimivw 3129 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
149, 13syl 17 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
15 velpw 4555 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1614, 15sylibr 234 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1716ssriv 3938 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550   × cxp 5614  dom cdm 5616   Fn wfn 6476  (class class class)co 7346  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-rest 17326
This theorem is referenced by:  1stckgenlem  23469  prdstopn  23544  trfbas2  23759  trfil1  23802  trfil2  23803  fgtr  23806  trust  24145  zdis  24733  cnambfre  37714  dvdmsscn  45980  dvnmptconst  45985  dvnxpaek  45986  dvnmul  45987  dvnprodlem3  45992
  Copyright terms: Public domain W3C validator