| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restsspw | Structured version Visualization version GIF version | ||
| Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restsspw | ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
| 2 | restfn 17335 | . . . . . . . . 9 ⊢ ↾t Fn (V × V) | |
| 3 | fndm 6592 | . . . . . . . . 9 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ dom ↾t = (V × V) |
| 5 | 4 | ndmov 7539 | . . . . . . 7 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 6 | 1, 5 | nsyl2 141 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| 7 | elrest 17338 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
| 9 | 8 | ibi 267 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴)) |
| 10 | inss2 4187 | . . . . . 6 ⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 | |
| 11 | sseq1 3956 | . . . . . 6 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 14 | 9, 13 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ⊆ 𝐴) |
| 15 | velpw 4556 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
| 17 | 16 | ssriv 3934 | 1 ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 × cxp 5619 dom cdm 5621 Fn wfn 6484 (class class class)co 7355 ↾t crest 17331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-rest 17333 |
| This theorem is referenced by: 1stckgenlem 23488 prdstopn 23563 trfbas2 23778 trfil1 23821 trfil2 23822 fgtr 23825 trust 24164 zdis 24752 cnambfre 37781 dvdmsscn 46096 dvnmptconst 46101 dvnxpaek 46102 dvnmul 46103 dvnprodlem3 46108 |
| Copyright terms: Public domain | W3C validator |