Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restsspw | Structured version Visualization version GIF version |
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restsspw | ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4248 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
2 | restfn 16929 | . . . . . . . . 9 ⊢ ↾t Fn (V × V) | |
3 | fndm 6481 | . . . . . . . . 9 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ dom ↾t = (V × V) |
5 | 4 | ndmov 7392 | . . . . . . 7 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
6 | 1, 5 | nsyl2 143 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
7 | elrest 16932 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
9 | 8 | ibi 270 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴)) |
10 | inss2 4144 | . . . . . 6 ⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 | |
11 | sseq1 3926 | . . . . . 6 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) | |
12 | 10, 11 | mpbiri 261 | . . . . 5 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
13 | 12 | rexlimivw 3201 | . . . 4 ⊢ (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
14 | 9, 13 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ⊆ 𝐴) |
15 | velpw 4518 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
16 | 14, 15 | sylibr 237 | . 2 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
17 | 16 | ssriv 3905 | 1 ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 𝒫 cpw 4513 × cxp 5549 dom cdm 5551 Fn wfn 6375 (class class class)co 7213 ↾t crest 16925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-rest 16927 |
This theorem is referenced by: 1stckgenlem 22450 prdstopn 22525 trfbas2 22740 trfil1 22783 trfil2 22784 fgtr 22787 trust 23127 zdis 23713 cnambfre 35562 dvdmsscn 43152 dvnmptconst 43157 dvnxpaek 43158 dvnmul 43159 dvnprodlem3 43164 |
Copyright terms: Public domain | W3C validator |