| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restsspw | Structured version Visualization version GIF version | ||
| Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restsspw | ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4315 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
| 2 | restfn 17438 | . . . . . . . . 9 ⊢ ↾t Fn (V × V) | |
| 3 | fndm 6641 | . . . . . . . . 9 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ dom ↾t = (V × V) |
| 5 | 4 | ndmov 7591 | . . . . . . 7 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
| 6 | 1, 5 | nsyl2 141 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| 7 | elrest 17441 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
| 9 | 8 | ibi 267 | . . . 4 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴)) |
| 10 | inss2 4213 | . . . . . 6 ⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 | |
| 11 | sseq1 3984 | . . . . . 6 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | rexlimivw 3137 | . . . 4 ⊢ (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 14 | 9, 13 | syl 17 | . . 3 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ⊆ 𝐴) |
| 15 | velpw 4580 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ 𝒫 𝐴) |
| 17 | 16 | ssriv 3962 | 1 ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 × cxp 5652 dom cdm 5654 Fn wfn 6526 (class class class)co 7405 ↾t crest 17434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-rest 17436 |
| This theorem is referenced by: 1stckgenlem 23491 prdstopn 23566 trfbas2 23781 trfil1 23824 trfil2 23825 fgtr 23828 trust 24168 zdis 24756 cnambfre 37692 dvdmsscn 45965 dvnmptconst 45970 dvnxpaek 45971 dvnmul 45972 dvnprodlem3 45977 |
| Copyright terms: Public domain | W3C validator |