MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsspw Structured version   Visualization version   GIF version

Theorem restsspw 17491
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4363 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
2 restfn 17484 . . . . . . . . 9 t Fn (V × V)
3 fndm 6682 . . . . . . . . 9 ( ↾t Fn (V × V) → dom ↾t = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↾t = (V × V)
54ndmov 7634 . . . . . . 7 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
61, 5nsyl2 141 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
7 elrest 17487 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
86, 7syl 17 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
98ibi 267 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
10 inss2 4259 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
11 sseq1 4034 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1210, 11mpbiri 258 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1312rexlimivw 3157 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
149, 13syl 17 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
15 velpw 4627 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1614, 15sylibr 234 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1716ssriv 4012 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   × cxp 5698  dom cdm 5700   Fn wfn 6568  (class class class)co 7448  t crest 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-rest 17482
This theorem is referenced by:  1stckgenlem  23582  prdstopn  23657  trfbas2  23872  trfil1  23915  trfil2  23916  fgtr  23919  trust  24259  zdis  24857  cnambfre  37628  dvdmsscn  45857  dvnmptconst  45862  dvnxpaek  45863  dvnmul  45864  dvnprodlem3  45869
  Copyright terms: Public domain W3C validator