MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsspw Structured version   Visualization version   GIF version

Theorem restsspw 16360
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4084 . . . . . . 7 (𝑥 ∈ (𝐽t 𝐴) → ¬ (𝐽t 𝐴) = ∅)
2 restfn 16353 . . . . . . . . 9 t Fn (V × V)
3 fndm 6168 . . . . . . . . 9 ( ↾t Fn (V × V) → dom ↾t = (V × V))
42, 3ax-mp 5 . . . . . . . 8 dom ↾t = (V × V)
54ndmov 7016 . . . . . . 7 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
61, 5nsyl2 144 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
7 elrest 16356 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
86, 7syl 17 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
98ibi 258 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
10 inss2 3993 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
11 sseq1 3786 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1210, 11mpbiri 249 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1312rexlimivw 3176 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
149, 13syl 17 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
15 selpw 4322 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1614, 15sylibr 225 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1716ssriv 3765 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wcel 2155  wrex 3056  Vcvv 3350  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315   × cxp 5275  dom cdm 5277   Fn wfn 6063  (class class class)co 6842  t crest 16349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-rest 16351
This theorem is referenced by:  1stckgenlem  21636  prdstopn  21711  trfbas2  21926  trfil1  21969  trfil2  21970  fgtr  21973  trust  22312  zdis  22898  cnambfre  33813  dvdmsscn  40721  dvnmptconst  40726  dvnxpaek  40727  dvnmul  40728  dvnprodlem3  40733
  Copyright terms: Public domain W3C validator