| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snfiOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of snfi 9017 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snfiOLD | ⊢ {𝐴} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8607 | . . . 4 ⊢ 1o ∈ ω | |
| 2 | ensn1g 8996 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
| 3 | breq2 5114 | . . . . 5 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 3591 | . . . 4 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | snprc 4684 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | en0 8992 | . . . . 5 ⊢ ({𝐴} ≈ ∅ ↔ {𝐴} = ∅) | |
| 8 | peano1 7868 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 9 | breq2 5114 | . . . . . . 7 ⊢ (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅)) | |
| 10 | 9 | rspcev 3591 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 11 | 8, 10 | mpan 690 | . . . . 5 ⊢ ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 12 | 7, 11 | sylbir 235 | . . . 4 ⊢ ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 13 | 6, 12 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 14 | 5, 13 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥 |
| 15 | isfi 8950 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 16 | 14, 15 | mpbir 231 | 1 ⊢ {𝐴} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∅c0 4299 {csn 4592 class class class wbr 5110 ωcom 7845 1oc1o 8430 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |