MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfiOLD Structured version   Visualization version   GIF version

Theorem snfiOLD 9056
Description: Obsolete version of snfi 9055 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snfiOLD {𝐴} ∈ Fin

Proof of Theorem snfiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 8650 . . . 4 1o ∈ ω
2 ensn1g 9034 . . . 4 (𝐴 ∈ V → {𝐴} ≈ 1o)
3 breq2 5123 . . . . 5 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 3601 . . . 4 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 587 . . 3 (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 snprc 4693 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
7 en0 9030 . . . . 5 ({𝐴} ≈ ∅ ↔ {𝐴} = ∅)
8 peano1 7882 . . . . . 6 ∅ ∈ ω
9 breq2 5123 . . . . . . 7 (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅))
109rspcev 3601 . . . . . 6 ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
118, 10mpan 690 . . . . 5 ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
127, 11sylbir 235 . . . 4 ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
136, 12sylbi 217 . . 3 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
145, 13pm2.61i 182 . 2 𝑥 ∈ ω {𝐴} ≈ 𝑥
15 isfi 8988 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
1614, 15mpbir 231 1 {𝐴} ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  c0 4308  {csn 4601   class class class wbr 5119  ωcom 7859  1oc1o 8471  cen 8954  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-om 7860  df-1o 8478  df-en 8958  df-fin 8961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator