![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of snfi 9109 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snfiOLD | ⊢ {𝐴} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8696 | . . . 4 ⊢ 1o ∈ ω | |
2 | ensn1g 9084 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
3 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
4 | 3 | rspcev 3635 | . . . 4 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
5 | 1, 2, 4 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
6 | snprc 4742 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | en0 9078 | . . . . 5 ⊢ ({𝐴} ≈ ∅ ↔ {𝐴} = ∅) | |
8 | peano1 7927 | . . . . . 6 ⊢ ∅ ∈ ω | |
9 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅)) | |
10 | 9 | rspcev 3635 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
11 | 8, 10 | mpan 689 | . . . . 5 ⊢ ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
12 | 7, 11 | sylbir 235 | . . . 4 ⊢ ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
13 | 6, 12 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
14 | 5, 13 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥 |
15 | isfi 9036 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
16 | 14, 15 | mpbir 231 | 1 ⊢ {𝐴} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∅c0 4352 {csn 4648 class class class wbr 5166 ωcom 7903 1oc1o 8515 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |