| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snfiOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of snfi 9014 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snfiOLD | ⊢ {𝐴} ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8604 | . . . 4 ⊢ 1o ∈ ω | |
| 2 | ensn1g 8993 | . . . 4 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
| 3 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 3588 | . . . 4 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | snprc 4681 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | en0 8989 | . . . . 5 ⊢ ({𝐴} ≈ ∅ ↔ {𝐴} = ∅) | |
| 8 | peano1 7865 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 9 | breq2 5111 | . . . . . . 7 ⊢ (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅)) | |
| 10 | 9 | rspcev 3588 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 11 | 8, 10 | mpan 690 | . . . . 5 ⊢ ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 12 | 7, 11 | sylbir 235 | . . . 4 ⊢ ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 13 | 6, 12 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 14 | 5, 13 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥 |
| 15 | isfi 8947 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 16 | 14, 15 | mpbir 231 | 1 ⊢ {𝐴} ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∅c0 4296 {csn 4589 class class class wbr 5107 ωcom 7842 1oc1o 8427 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |