MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfiOLD Structured version   Visualization version   GIF version

Theorem snfiOLD 9018
Description: Obsolete version of snfi 9017 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snfiOLD {𝐴} ∈ Fin

Proof of Theorem snfiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 8607 . . . 4 1o ∈ ω
2 ensn1g 8996 . . . 4 (𝐴 ∈ V → {𝐴} ≈ 1o)
3 breq2 5114 . . . . 5 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 3591 . . . 4 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 587 . . 3 (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 snprc 4684 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
7 en0 8992 . . . . 5 ({𝐴} ≈ ∅ ↔ {𝐴} = ∅)
8 peano1 7868 . . . . . 6 ∅ ∈ ω
9 breq2 5114 . . . . . . 7 (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅))
109rspcev 3591 . . . . . 6 ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
118, 10mpan 690 . . . . 5 ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
127, 11sylbir 235 . . . 4 ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
136, 12sylbi 217 . . 3 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
145, 13pm2.61i 182 . 2 𝑥 ∈ ω {𝐴} ≈ 𝑥
15 isfi 8950 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
1614, 15mpbir 231 1 {𝐴} ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  c0 4299  {csn 4592   class class class wbr 5110  ωcom 7845  1oc1o 8430  cen 8918  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator