MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfiOLD Structured version   Visualization version   GIF version

Theorem snfiOLD 8976
Description: Obsolete version of snfi 8975 as of 13-Jan-2025. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snfiOLD {𝐴} ∈ Fin

Proof of Theorem snfiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 8565 . . . 4 1o ∈ ω
2 ensn1g 8954 . . . 4 (𝐴 ∈ V → {𝐴} ≈ 1o)
3 breq2 5099 . . . . 5 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 3579 . . . 4 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 587 . . 3 (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 snprc 4671 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
7 en0 8950 . . . . 5 ({𝐴} ≈ ∅ ↔ {𝐴} = ∅)
8 peano1 7829 . . . . . 6 ∅ ∈ ω
9 breq2 5099 . . . . . . 7 (𝑥 = ∅ → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ ∅))
109rspcev 3579 . . . . . 6 ((∅ ∈ ω ∧ {𝐴} ≈ ∅) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
118, 10mpan 690 . . . . 5 ({𝐴} ≈ ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
127, 11sylbir 235 . . . 4 ({𝐴} = ∅ → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
136, 12sylbi 217 . . 3 𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
145, 13pm2.61i 182 . 2 𝑥 ∈ ω {𝐴} ≈ 𝑥
15 isfi 8908 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
1614, 15mpbir 231 1 {𝐴} ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  c0 4286  {csn 4579   class class class wbr 5095  ωcom 7806  1oc1o 8388  cen 8876  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-om 7807  df-1o 8395  df-en 8880  df-fin 8883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator