| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssclem | Structured version Visualization version GIF version | ||
| Description: Lemma for ssc1 17728 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| ssclem | ⊢ (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpid 5869 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 2 | isssc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | 2 | fndmd 6586 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom 𝐻 = (𝑆 × 𝑆)) |
| 5 | dmexg 7831 | . . . . . 6 ⊢ (𝐻 ∈ V → dom 𝐻 ∈ V) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom 𝐻 ∈ V) |
| 7 | 4, 6 | eqeltrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → (𝑆 × 𝑆) ∈ V) |
| 8 | 7 | dmexd 7833 | . . 3 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom (𝑆 × 𝑆) ∈ V) |
| 9 | 1, 8 | eqeltrrid 2836 | . 2 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → 𝑆 ∈ V) |
| 10 | sqxpexg 7688 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 × 𝑆) ∈ V) | |
| 11 | fnex 7151 | . . 3 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
| 12 | 2, 10, 11 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ V) → 𝐻 ∈ V) |
| 13 | 9, 12 | impbida 800 | 1 ⊢ (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 × cxp 5612 dom cdm 5614 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: ssc1 17728 |
| Copyright terms: Public domain | W3C validator |