![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssclem | Structured version Visualization version GIF version |
Description: Lemma for ssc1 17773 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
ssclem | ⊢ (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpid 5929 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
2 | isssc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | 2 | fndmd 6654 | . . . . . 6 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom 𝐻 = (𝑆 × 𝑆)) |
5 | dmexg 7897 | . . . . . 6 ⊢ (𝐻 ∈ V → dom 𝐻 ∈ V) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom 𝐻 ∈ V) |
7 | 4, 6 | eqeltrrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → (𝑆 × 𝑆) ∈ V) |
8 | 7 | dmexd 7899 | . . 3 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → dom (𝑆 × 𝑆) ∈ V) |
9 | 1, 8 | eqeltrrid 2837 | . 2 ⊢ ((𝜑 ∧ 𝐻 ∈ V) → 𝑆 ∈ V) |
10 | sqxpexg 7745 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 × 𝑆) ∈ V) | |
11 | fnex 7221 | . . 3 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
12 | 2, 10, 11 | syl2an 595 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ V) → 𝐻 ∈ V) |
13 | 9, 12 | impbida 798 | 1 ⊢ (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 × cxp 5674 dom cdm 5676 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: ssc1 17773 |
Copyright terms: Public domain | W3C validator |