MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssclem Structured version   Visualization version   GIF version

Theorem ssclem 17089
Description: Lemma for ssc1 17091 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
ssclem (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))

Proof of Theorem ssclem
StepHypRef Expression
1 dmxpid 5800 . . 3 dom (𝑆 × 𝑆) = 𝑆
2 isssc.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 fndm 6455 . . . . . . 7 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
42, 3syl 17 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
54adantr 483 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 = (𝑆 × 𝑆))
6 dmexg 7613 . . . . . 6 (𝐻 ∈ V → dom 𝐻 ∈ V)
76adantl 484 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 ∈ V)
85, 7eqeltrrd 2914 . . . 4 ((𝜑𝐻 ∈ V) → (𝑆 × 𝑆) ∈ V)
98dmexd 7615 . . 3 ((𝜑𝐻 ∈ V) → dom (𝑆 × 𝑆) ∈ V)
101, 9eqeltrrid 2918 . 2 ((𝜑𝐻 ∈ V) → 𝑆 ∈ V)
11 sqxpexg 7477 . . 3 (𝑆 ∈ V → (𝑆 × 𝑆) ∈ V)
12 fnex 6980 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
132, 11, 12syl2an 597 . 2 ((𝜑𝑆 ∈ V) → 𝐻 ∈ V)
1410, 13impbida 799 1 (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494   × cxp 5553  dom cdm 5555   Fn wfn 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by:  ssc1  17091
  Copyright terms: Public domain W3C validator