MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssclem Structured version   Visualization version   GIF version

Theorem ssclem 17531
Description: Lemma for ssc1 17533 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
ssclem (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))

Proof of Theorem ssclem
StepHypRef Expression
1 dmxpid 5839 . . 3 dom (𝑆 × 𝑆) = 𝑆
2 isssc.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
32fndmd 6538 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
43adantr 481 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 = (𝑆 × 𝑆))
5 dmexg 7750 . . . . . 6 (𝐻 ∈ V → dom 𝐻 ∈ V)
65adantl 482 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 ∈ V)
74, 6eqeltrrd 2840 . . . 4 ((𝜑𝐻 ∈ V) → (𝑆 × 𝑆) ∈ V)
87dmexd 7752 . . 3 ((𝜑𝐻 ∈ V) → dom (𝑆 × 𝑆) ∈ V)
91, 8eqeltrrid 2844 . 2 ((𝜑𝐻 ∈ V) → 𝑆 ∈ V)
10 sqxpexg 7605 . . 3 (𝑆 ∈ V → (𝑆 × 𝑆) ∈ V)
11 fnex 7093 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
122, 10, 11syl2an 596 . 2 ((𝜑𝑆 ∈ V) → 𝐻 ∈ V)
139, 12impbida 798 1 (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   × cxp 5587  dom cdm 5589   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  ssc1  17533
  Copyright terms: Public domain W3C validator