MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssclem Structured version   Visualization version   GIF version

Theorem ssclem 17863
Description: Lemma for ssc1 17865 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
ssclem (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))

Proof of Theorem ssclem
StepHypRef Expression
1 dmxpid 5941 . . 3 dom (𝑆 × 𝑆) = 𝑆
2 isssc.1 . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
32fndmd 6673 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
43adantr 480 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 = (𝑆 × 𝑆))
5 dmexg 7923 . . . . . 6 (𝐻 ∈ V → dom 𝐻 ∈ V)
65adantl 481 . . . . 5 ((𝜑𝐻 ∈ V) → dom 𝐻 ∈ V)
74, 6eqeltrrd 2842 . . . 4 ((𝜑𝐻 ∈ V) → (𝑆 × 𝑆) ∈ V)
87dmexd 7925 . . 3 ((𝜑𝐻 ∈ V) → dom (𝑆 × 𝑆) ∈ V)
91, 8eqeltrrid 2846 . 2 ((𝜑𝐻 ∈ V) → 𝑆 ∈ V)
10 sqxpexg 7775 . . 3 (𝑆 ∈ V → (𝑆 × 𝑆) ∈ V)
11 fnex 7237 . . 3 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
122, 10, 11syl2an 596 . 2 ((𝜑𝑆 ∈ V) → 𝐻 ∈ V)
139, 12impbida 801 1 (𝜑 → (𝐻 ∈ V ↔ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   × cxp 5683  dom cdm 5685   Fn wfn 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  ssc1  17865
  Copyright terms: Public domain W3C validator