|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sscfn2 | Structured version Visualization version GIF version | ||
| Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | 
| sscfn2.2 | ⊢ (𝜑 → 𝑇 = dom dom 𝐽) | 
| Ref | Expression | 
|---|---|
| sscfn2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 2 | brssc 17859 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) | 
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡)) | |
| 5 | sscfn2.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 = dom dom 𝐽) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽) | 
| 7 | fndm 6670 | . . . . . . . . . . . 12 ⊢ (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡)) | |
| 8 | 7 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡)) | 
| 9 | 8 | dmeqd 5915 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡)) | 
| 10 | dmxpid 5940 | . . . . . . . . . 10 ⊢ dom (𝑡 × 𝑡) = 𝑡 | |
| 11 | 9, 10 | eqtrdi 2792 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡) | 
| 12 | 6, 11 | eqtr2d 2777 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇) | 
| 13 | 12 | sqxpeqd 5716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇)) | 
| 14 | 13 | fneq2d 6661 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇))) | 
| 15 | 4, 14 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇)) | 
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇))) | 
| 17 | 16 | adantrd 491 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) | 
| 18 | 17 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) | 
| 19 | 3, 18 | mpd 15 | 1 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 𝒫 cpw 4599 class class class wbr 5142 × cxp 5682 dom cdm 5684 Fn wfn 6555 ‘cfv 6560 Xcixp 8938 ⊆cat cssc 17852 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ixp 8939 df-ssc 17855 | 
| This theorem is referenced by: ssc2 17867 ssctr 17870 | 
| Copyright terms: Public domain | W3C validator |