MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   GIF version

Theorem sscfn2 17530
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn2.2 (𝜑𝑇 = dom dom 𝐽)
Assertion
Ref Expression
sscfn2 (𝜑𝐽 Fn (𝑇 × 𝑇))

Proof of Theorem sscfn2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17526 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
31, 2sylib 217 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
4 simpr 485 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡))
5 sscfn2.2 . . . . . . . . . 10 (𝜑𝑇 = dom dom 𝐽)
65adantr 481 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽)
7 fndm 6536 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
87adantl 482 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
98dmeqd 5814 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡))
10 dmxpid 5839 . . . . . . . . . 10 dom (𝑡 × 𝑡) = 𝑡
119, 10eqtrdi 2794 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡)
126, 11eqtr2d 2779 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312sqxpeqd 5621 . . . . . . 7 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1413fneq2d 6527 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
154, 14mpbid 231 . . . . 5 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
1615ex 413 . . . 4 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇)))
1716adantrd 492 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
1817exlimdv 1936 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
193, 18mpd 15 1 (𝜑𝐽 Fn (𝑇 × 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  dom cdm 5589   Fn wfn 6428  cfv 6433  Xcixp 8685  cat cssc 17519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ixp 8686  df-ssc 17522
This theorem is referenced by:  ssc2  17534  ssctr  17537
  Copyright terms: Public domain W3C validator