MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   GIF version

Theorem sscfn2 17862
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn2.2 (𝜑𝑇 = dom dom 𝐽)
Assertion
Ref Expression
sscfn2 (𝜑𝐽 Fn (𝑇 × 𝑇))

Proof of Theorem sscfn2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17858 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
31, 2sylib 218 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
4 simpr 484 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡))
5 sscfn2.2 . . . . . . . . . 10 (𝜑𝑇 = dom dom 𝐽)
65adantr 480 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽)
7 fndm 6671 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
87adantl 481 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
98dmeqd 5916 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡))
10 dmxpid 5941 . . . . . . . . . 10 dom (𝑡 × 𝑡) = 𝑡
119, 10eqtrdi 2793 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡)
126, 11eqtr2d 2778 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312sqxpeqd 5717 . . . . . . 7 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1413fneq2d 6662 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
154, 14mpbid 232 . . . . 5 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
1615ex 412 . . . 4 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇)))
1716adantrd 491 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
1817exlimdv 1933 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
193, 18mpd 15 1 (𝜑𝐽 Fn (𝑇 × 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070  𝒫 cpw 4600   class class class wbr 5143   × cxp 5683  dom cdm 5685   Fn wfn 6556  cfv 6561  Xcixp 8937  cat cssc 17851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ixp 8938  df-ssc 17854
This theorem is referenced by:  ssc2  17866  ssctr  17869
  Copyright terms: Public domain W3C validator