MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   GIF version

Theorem sscfn2 17743
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn2.2 (𝜑𝑇 = dom dom 𝐽)
Assertion
Ref Expression
sscfn2 (𝜑𝐽 Fn (𝑇 × 𝑇))

Proof of Theorem sscfn2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17739 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
31, 2sylib 218 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
4 simpr 484 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡))
5 sscfn2.2 . . . . . . . . . 10 (𝜑𝑇 = dom dom 𝐽)
65adantr 480 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽)
7 fndm 6589 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
87adantl 481 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
98dmeqd 5852 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡))
10 dmxpid 5876 . . . . . . . . . 10 dom (𝑡 × 𝑡) = 𝑡
119, 10eqtrdi 2780 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡)
126, 11eqtr2d 2765 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312sqxpeqd 5655 . . . . . . 7 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1413fneq2d 6580 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
154, 14mpbid 232 . . . . 5 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
1615ex 412 . . . 4 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇)))
1716adantrd 491 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
1817exlimdv 1933 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
193, 18mpd 15 1 (𝜑𝐽 Fn (𝑇 × 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  𝒫 cpw 4553   class class class wbr 5095   × cxp 5621  dom cdm 5623   Fn wfn 6481  cfv 6486  Xcixp 8831  cat cssc 17732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ixp 8832  df-ssc 17735
This theorem is referenced by:  ssc2  17747  ssctr  17750  iinfssc  49043
  Copyright terms: Public domain W3C validator