MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   GIF version

Theorem sscfn2 17323
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn2.2 (𝜑𝑇 = dom dom 𝐽)
Assertion
Ref Expression
sscfn2 (𝜑𝐽 Fn (𝑇 × 𝑇))

Proof of Theorem sscfn2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17319 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
31, 2sylib 221 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
4 simpr 488 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡))
5 sscfn2.2 . . . . . . . . . 10 (𝜑𝑇 = dom dom 𝐽)
65adantr 484 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽)
7 fndm 6481 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
87adantl 485 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
98dmeqd 5774 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡))
10 dmxpid 5799 . . . . . . . . . 10 dom (𝑡 × 𝑡) = 𝑡
119, 10eqtrdi 2794 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡)
126, 11eqtr2d 2778 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312sqxpeqd 5583 . . . . . . 7 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1413fneq2d 6473 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
154, 14mpbid 235 . . . . 5 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
1615ex 416 . . . 4 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇)))
1716adantrd 495 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
1817exlimdv 1941 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
193, 18mpd 15 1 (𝜑𝐽 Fn (𝑇 × 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wrex 3062  𝒫 cpw 4513   class class class wbr 5053   × cxp 5549  dom cdm 5551   Fn wfn 6375  cfv 6380  Xcixp 8578  cat cssc 17312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ixp 8579  df-ssc 17315
This theorem is referenced by:  ssc2  17327  ssctr  17330
  Copyright terms: Public domain W3C validator