| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscfn2 | Structured version Visualization version GIF version | ||
| Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
| sscfn2.2 | ⊢ (𝜑 → 𝑇 = dom dom 𝐽) |
| Ref | Expression |
|---|---|
| sscfn2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 2 | brssc 17776 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡)) | |
| 5 | sscfn2.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 = dom dom 𝐽) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽) |
| 7 | fndm 6621 | . . . . . . . . . . . 12 ⊢ (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡)) | |
| 8 | 7 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡)) |
| 9 | 8 | dmeqd 5869 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡)) |
| 10 | dmxpid 5894 | . . . . . . . . . 10 ⊢ dom (𝑡 × 𝑡) = 𝑡 | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡) |
| 12 | 6, 11 | eqtr2d 2765 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇) |
| 13 | 12 | sqxpeqd 5670 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇)) |
| 14 | 13 | fneq2d 6612 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇))) |
| 15 | 4, 14 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇))) |
| 17 | 16 | adantrd 491 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
| 18 | 17 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
| 19 | 3, 18 | mpd 15 | 1 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 𝒫 cpw 4563 class class class wbr 5107 × cxp 5636 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 Xcixp 8870 ⊆cat cssc 17769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ixp 8871 df-ssc 17772 |
| This theorem is referenced by: ssc2 17784 ssctr 17787 iinfssc 49046 |
| Copyright terms: Public domain | W3C validator |