MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   GIF version

Theorem sscfn2 17447
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn2.2 (𝜑𝑇 = dom dom 𝐽)
Assertion
Ref Expression
sscfn2 (𝜑𝐽 Fn (𝑇 × 𝑇))

Proof of Theorem sscfn2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17443 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
31, 2sylib 217 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)))
4 simpr 484 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡))
5 sscfn2.2 . . . . . . . . . 10 (𝜑𝑇 = dom dom 𝐽)
65adantr 480 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽)
7 fndm 6520 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
87adantl 481 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
98dmeqd 5803 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡))
10 dmxpid 5828 . . . . . . . . . 10 dom (𝑡 × 𝑡) = 𝑡
119, 10eqtrdi 2795 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡)
126, 11eqtr2d 2779 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312sqxpeqd 5612 . . . . . . 7 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1413fneq2d 6511 . . . . . 6 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
154, 14mpbid 231 . . . . 5 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
1615ex 412 . . . 4 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇)))
1716adantrd 491 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
1817exlimdv 1937 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽𝑥)) → 𝐽 Fn (𝑇 × 𝑇)))
193, 18mpd 15 1 (𝜑𝐽 Fn (𝑇 × 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  dom cdm 5580   Fn wfn 6413  cfv 6418  Xcixp 8643  cat cssc 17436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ixp 8644  df-ssc 17439
This theorem is referenced by:  ssc2  17451  ssctr  17454
  Copyright terms: Public domain W3C validator