![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscfn2 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn2.2 | ⊢ (𝜑 → 𝑇 = dom dom 𝐽) |
Ref | Expression |
---|---|
sscfn2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17694 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) |
4 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡)) | |
5 | sscfn2.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 = dom dom 𝐽) | |
6 | 5 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽) |
7 | fndm 6603 | . . . . . . . . . . . 12 ⊢ (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡)) | |
8 | 7 | adantl 482 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡)) |
9 | 8 | dmeqd 5860 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡)) |
10 | dmxpid 5884 | . . . . . . . . . 10 ⊢ dom (𝑡 × 𝑡) = 𝑡 | |
11 | 9, 10 | eqtrdi 2792 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡) |
12 | 6, 11 | eqtr2d 2777 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇) |
13 | 12 | sqxpeqd 5664 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇)) |
14 | 13 | fneq2d 6594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇))) |
15 | 4, 14 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇)) |
16 | 15 | ex 413 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇))) |
17 | 16 | adantrd 492 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
18 | 17 | exlimdv 1936 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
19 | 3, 18 | mpd 15 | 1 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3072 𝒫 cpw 4559 class class class wbr 5104 × cxp 5630 dom cdm 5632 Fn wfn 6489 ‘cfv 6494 Xcixp 8832 ⊆cat cssc 17687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5530 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-ixp 8833 df-ssc 17690 |
This theorem is referenced by: ssc2 17702 ssctr 17705 |
Copyright terms: Public domain | W3C validator |