![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscfn2 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn2.2 | ⊢ (𝜑 → 𝑇 = dom dom 𝐽) |
Ref | Expression |
---|---|
sscfn2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17830 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥))) |
4 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑡 × 𝑡)) | |
5 | sscfn2.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑇 = dom dom 𝐽) | |
6 | 5 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑇 = dom dom 𝐽) |
7 | fndm 6663 | . . . . . . . . . . . 12 ⊢ (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡)) | |
8 | 7 | adantl 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡)) |
9 | 8 | dmeqd 5912 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = dom (𝑡 × 𝑡)) |
10 | dmxpid 5936 | . . . . . . . . . 10 ⊢ dom (𝑡 × 𝑡) = 𝑡 | |
11 | 9, 10 | eqtrdi 2782 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → dom dom 𝐽 = 𝑡) |
12 | 6, 11 | eqtr2d 2767 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇) |
13 | 12 | sqxpeqd 5714 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇)) |
14 | 13 | fneq2d 6654 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇))) |
15 | 4, 14 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇)) |
16 | 15 | ex 411 | . . . 4 ⊢ (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝐽 Fn (𝑇 × 𝑇))) |
17 | 16 | adantrd 490 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
18 | 17 | exlimdv 1929 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑦 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑦 × 𝑦)𝒫 (𝐽‘𝑥)) → 𝐽 Fn (𝑇 × 𝑇))) |
19 | 3, 18 | mpd 15 | 1 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3060 𝒫 cpw 4607 class class class wbr 5153 × cxp 5680 dom cdm 5682 Fn wfn 6549 ‘cfv 6554 Xcixp 8926 ⊆cat cssc 17823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ixp 8927 df-ssc 17826 |
This theorem is referenced by: ssc2 17838 ssctr 17841 |
Copyright terms: Public domain | W3C validator |