Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod2iN Structured version   Visualization version   GIF version

Theorem pmod2iN 37790
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod2iN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))

Proof of Theorem pmod2iN
StepHypRef Expression
1 incom 4131 . . . . . 6 (𝑋𝑌) = (𝑌𝑋)
21oveq1i 7265 . . . . 5 ((𝑋𝑌) + 𝑍) = ((𝑌𝑋) + 𝑍)
3 hllat 37304 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝐾 ∈ Lat)
5 simp22 1205 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑌𝐴)
6 ssinss1 4168 . . . . . . 7 (𝑌𝐴 → (𝑌𝑋) ⊆ 𝐴)
75, 6syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑌𝑋) ⊆ 𝐴)
8 simp23 1206 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑍𝐴)
9 pmod.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
10 pmod.p . . . . . . 7 + = (+𝑃𝐾)
119, 10paddcom 37754 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
124, 7, 8, 11syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
132, 12syl5eq 2791 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑍 + (𝑌𝑋)))
14 simp21 1204 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑋𝑆)
158, 5, 143jca 1126 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍𝐴𝑌𝐴𝑋𝑆))
16 pmod.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
179, 16, 10pmod1i 37789 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆)) → (𝑍𝑋 → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋))))
18173impia 1115 . . . . 5 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
1915, 18syld3an2 1409 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
209, 10paddcom 37754 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
214, 8, 5, 20syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
2221ineq1d 4142 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = ((𝑌 + 𝑍) ∩ 𝑋))
2313, 19, 223eqtr2d 2784 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = ((𝑌 + 𝑍) ∩ 𝑋))
24 incom 4131 . . 3 ((𝑌 + 𝑍) ∩ 𝑋) = (𝑋 ∩ (𝑌 + 𝑍))
2523, 24eqtrdi 2795 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))
26253expia 1119 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Latclat 18064  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-padd 37737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator