Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod2iN Structured version   Visualization version   GIF version

Theorem pmod2iN 39850
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod2iN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))

Proof of Theorem pmod2iN
StepHypRef Expression
1 incom 4175 . . . . . 6 (𝑋𝑌) = (𝑌𝑋)
21oveq1i 7400 . . . . 5 ((𝑋𝑌) + 𝑍) = ((𝑌𝑋) + 𝑍)
3 hllat 39363 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝐾 ∈ Lat)
5 simp22 1208 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑌𝐴)
6 ssinss1 4212 . . . . . . 7 (𝑌𝐴 → (𝑌𝑋) ⊆ 𝐴)
75, 6syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑌𝑋) ⊆ 𝐴)
8 simp23 1209 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑍𝐴)
9 pmod.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
10 pmod.p . . . . . . 7 + = (+𝑃𝐾)
119, 10paddcom 39814 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
124, 7, 8, 11syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
132, 12eqtrid 2777 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑍 + (𝑌𝑋)))
14 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑋𝑆)
158, 5, 143jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍𝐴𝑌𝐴𝑋𝑆))
16 pmod.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
179, 16, 10pmod1i 39849 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆)) → (𝑍𝑋 → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋))))
18173impia 1117 . . . . 5 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
1915, 18syld3an2 1413 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
209, 10paddcom 39814 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
214, 8, 5, 20syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
2221ineq1d 4185 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = ((𝑌 + 𝑍) ∩ 𝑋))
2313, 19, 223eqtr2d 2771 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = ((𝑌 + 𝑍) ∩ 𝑋))
24 incom 4175 . . 3 ((𝑌 + 𝑍) ∩ 𝑋) = (𝑋 ∩ (𝑌 + 𝑍))
2523, 24eqtrdi 2781 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))
26253expia 1121 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Latclat 18397  Atomscatm 39263  HLchlt 39350  PSubSpcpsubsp 39497  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-padd 39797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator