![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omelesplit | Structured version Visualization version GIF version |
Description: The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omelesplit.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omelesplit.2 | ⊢ 𝑋 = ∪ dom 𝑂 |
omelesplit.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omelesplit | ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inundif 4271 | . . . . 5 ⊢ ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)) = 𝐴 | |
2 | 1 | eqcomi 2834 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸))) |
4 | 3 | fveq2d 6441 | . 2 ⊢ (𝜑 → (𝑂‘𝐴) = (𝑂‘((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)))) |
5 | omelesplit.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
6 | omelesplit.2 | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
7 | omelesplit.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
8 | ssinss1 4068 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∩ 𝐸) ⊆ 𝑋) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐸) ⊆ 𝑋) |
10 | 7 | ssdifssd 3977 | . . 3 ⊢ (𝜑 → (𝐴 ∖ 𝐸) ⊆ 𝑋) |
11 | 5, 6, 9, 10 | omeunle 41522 | . 2 ⊢ (𝜑 → (𝑂‘((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸))) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
12 | 4, 11 | eqbrtrd 4897 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∖ cdif 3795 ∪ cun 3796 ∩ cin 3797 ⊆ wss 3798 ∪ cuni 4660 class class class wbr 4875 dom cdm 5346 ‘cfv 6127 (class class class)co 6910 ≤ cle 10399 +𝑒 cxad 12237 OutMeascome 41495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-oi 8691 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-xadd 12240 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-sum 14801 df-sumge0 41369 df-ome 41496 |
This theorem is referenced by: carageniuncl 41529 caragenel2d 41538 |
Copyright terms: Public domain | W3C validator |