![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omelesplit | Structured version Visualization version GIF version |
Description: The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omelesplit.1 | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omelesplit.2 | ⊢ 𝑋 = ∪ dom 𝑂 |
omelesplit.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omelesplit | ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inundif 4488 | . . . . 5 ⊢ ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)) = 𝐴 | |
2 | 1 | eqcomi 2746 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸))) |
4 | 3 | fveq2d 6918 | . 2 ⊢ (𝜑 → (𝑂‘𝐴) = (𝑂‘((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸)))) |
5 | omelesplit.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
6 | omelesplit.2 | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
7 | omelesplit.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
8 | ssinss1 4257 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∩ 𝐸) ⊆ 𝑋) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐸) ⊆ 𝑋) |
10 | 7 | ssdifssd 4160 | . . 3 ⊢ (𝜑 → (𝐴 ∖ 𝐸) ⊆ 𝑋) |
11 | 5, 6, 9, 10 | omeunle 46500 | . 2 ⊢ (𝜑 → (𝑂‘((𝐴 ∩ 𝐸) ∪ (𝐴 ∖ 𝐸))) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
12 | 4, 11 | eqbrtrd 5173 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3963 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 ∪ cuni 4915 class class class wbr 5151 dom cdm 5693 ‘cfv 6569 (class class class)co 7438 ≤ cle 11303 +𝑒 cxad 13159 OutMeascome 46473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-xadd 13162 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-sumge0 46347 df-ome 46474 |
This theorem is referenced by: carageniuncl 46507 caragenel2d 46516 |
Copyright terms: Public domain | W3C validator |