Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omelesplit Structured version   Visualization version   GIF version

Theorem omelesplit 46466
Description: The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omelesplit.1 (𝜑𝑂 ∈ OutMeas)
omelesplit.2 𝑋 = dom 𝑂
omelesplit.3 (𝜑𝐴𝑋)
Assertion
Ref Expression
omelesplit (𝜑 → (𝑂𝐴) ≤ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))

Proof of Theorem omelesplit
StepHypRef Expression
1 inundif 4459 . . . . 5 ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
21eqcomi 2743 . . . 4 𝐴 = ((𝐴𝐸) ∪ (𝐴𝐸))
32a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐸) ∪ (𝐴𝐸)))
43fveq2d 6889 . 2 (𝜑 → (𝑂𝐴) = (𝑂‘((𝐴𝐸) ∪ (𝐴𝐸))))
5 omelesplit.1 . . 3 (𝜑𝑂 ∈ OutMeas)
6 omelesplit.2 . . 3 𝑋 = dom 𝑂
7 omelesplit.3 . . . 4 (𝜑𝐴𝑋)
8 ssinss1 4226 . . . 4 (𝐴𝑋 → (𝐴𝐸) ⊆ 𝑋)
97, 8syl 17 . . 3 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
107ssdifssd 4127 . . 3 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
115, 6, 9, 10omeunle 46464 . 2 (𝜑 → (𝑂‘((𝐴𝐸) ∪ (𝐴𝐸))) ≤ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
124, 11eqbrtrd 5145 1 (𝜑 → (𝑂𝐴) ≤ ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cdif 3928  cun 3929  cin 3930  wss 3931   cuni 4887   class class class wbr 5123  dom cdm 5665  cfv 6540  (class class class)co 7412  cle 11277   +𝑒 cxad 13133  OutMeascome 46437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-rp 13016  df-xadd 13136  df-ico 13374  df-icc 13375  df-fz 13529  df-fzo 13676  df-seq 14024  df-exp 14084  df-hash 14351  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-sumge0 46311  df-ome 46438
This theorem is referenced by:  carageniuncl  46471  caragenel2d  46480
  Copyright terms: Public domain W3C validator