| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspm | Structured version Visualization version GIF version | ||
| Description: Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspm.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspm.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| sspm.l | ⊢ 𝐿 = ( −𝑣 ‘𝑊) |
| sspm.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspm | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspm.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspm.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 3 | sspm.m | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 4 | sspm.l | . . 3 ⊢ 𝐿 = ( −𝑣 ‘𝑊) | |
| 5 | 1, 3, 4, 2 | sspmval 30695 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐿𝑦) = (𝑥𝑀𝑦)) |
| 6 | 1, 4 | nvmf 30607 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐿:(𝑌 × 𝑌)⟶𝑌) |
| 7 | eqid 2729 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 8 | 7, 3 | nvmf 30607 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑀:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
| 9 | 1, 2, 5, 6, 8 | sspmlem 30694 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5621 ↾ cres 5625 ‘cfv 6486 NrmCVeccnv 30546 BaseSetcba 30548 −𝑣 cnsb 30551 SubSpcss 30683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ssp 30684 |
| This theorem is referenced by: hhssvs 31234 |
| Copyright terms: Public domain | W3C validator |