Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version |
Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspims.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspims.d | ⊢ 𝐷 = (IndMet‘𝑈) |
sspims.c | ⊢ 𝐶 = (IndMet‘𝑊) |
sspims.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspims | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | sspims.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
3 | sspims.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | sspims.c | . . 3 ⊢ 𝐶 = (IndMet‘𝑊) | |
5 | 1, 3, 4, 2 | sspimsval 28620 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦)) |
6 | 1, 4 | imsdf 28571 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ) |
7 | eqid 2758 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | 7, 3 | imsdf 28571 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ) |
9 | 1, 2, 5, 6, 8 | sspmlem 28614 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 × cxp 5522 ↾ cres 5526 ‘cfv 6335 ℝcr 10574 NrmCVeccnv 28466 BaseSetcba 28468 IndMetcims 28473 SubSpcss 28603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-sub 10910 df-neg 10911 df-grpo 28375 df-gid 28376 df-ginv 28377 df-gdiv 28378 df-ablo 28427 df-vc 28441 df-nv 28474 df-va 28477 df-ba 28478 df-sm 28479 df-0v 28480 df-vs 28481 df-nmcv 28482 df-ims 28483 df-ssp 28604 |
This theorem is referenced by: bnsscmcl 28750 minvecolem4a 28759 |
Copyright terms: Public domain | W3C validator |