| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version | ||
| Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspims.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspims.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| sspims.c | ⊢ 𝐶 = (IndMet‘𝑊) |
| sspims.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspims | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspims.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspims.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 3 | sspims.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | sspims.c | . . 3 ⊢ 𝐶 = (IndMet‘𝑊) | |
| 5 | 1, 3, 4, 2 | sspimsval 30717 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦)) |
| 6 | 1, 4 | imsdf 30668 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ) |
| 7 | eqid 2729 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 8 | 7, 3 | imsdf 30668 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ) |
| 9 | 1, 2, 5, 6, 8 | sspmlem 30711 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5629 ↾ cres 5633 ‘cfv 6499 ℝcr 11043 NrmCVeccnv 30563 BaseSetcba 30565 IndMetcims 30570 SubSpcss 30700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-ssp 30701 |
| This theorem is referenced by: bnsscmcl 30847 minvecolem4a 30856 |
| Copyright terms: Public domain | W3C validator |