![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version |
Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspims.y | β’ π = (BaseSetβπ) |
sspims.d | β’ π· = (IndMetβπ) |
sspims.c | β’ πΆ = (IndMetβπ) |
sspims.h | β’ π» = (SubSpβπ) |
Ref | Expression |
---|---|
sspims | β’ ((π β NrmCVec β§ π β π») β πΆ = (π· βΎ (π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | . 2 β’ π = (BaseSetβπ) | |
2 | sspims.h | . 2 β’ π» = (SubSpβπ) | |
3 | sspims.d | . . 3 β’ π· = (IndMetβπ) | |
4 | sspims.c | . . 3 β’ πΆ = (IndMetβπ) | |
5 | 1, 3, 4, 2 | sspimsval 30561 | . 2 β’ (((π β NrmCVec β§ π β π») β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) = (π₯π·π¦)) |
6 | 1, 4 | imsdf 30512 | . 2 β’ (π β NrmCVec β πΆ:(π Γ π)βΆβ) |
7 | eqid 2728 | . . 3 β’ (BaseSetβπ) = (BaseSetβπ) | |
8 | 7, 3 | imsdf 30512 | . 2 β’ (π β NrmCVec β π·:((BaseSetβπ) Γ (BaseSetβπ))βΆβ) |
9 | 1, 2, 5, 6, 8 | sspmlem 30555 | 1 β’ ((π β NrmCVec β§ π β π») β πΆ = (π· βΎ (π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Γ cxp 5676 βΎ cres 5680 βcfv 6548 βcr 11138 NrmCVeccnv 30407 BaseSetcba 30409 IndMetcims 30414 SubSpcss 30544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-neg 11478 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 df-ims 30424 df-ssp 30545 |
This theorem is referenced by: bnsscmcl 30691 minvecolem4a 30700 |
Copyright terms: Public domain | W3C validator |