MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspims Structured version   Visualization version   GIF version

Theorem sspims 30726
Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspims.y 𝑌 = (BaseSet‘𝑊)
sspims.d 𝐷 = (IndMet‘𝑈)
sspims.c 𝐶 = (IndMet‘𝑊)
sspims.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspims ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)))

Proof of Theorem sspims
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspims.y . 2 𝑌 = (BaseSet‘𝑊)
2 sspims.h . 2 𝐻 = (SubSp‘𝑈)
3 sspims.d . . 3 𝐷 = (IndMet‘𝑈)
4 sspims.c . . 3 𝐶 = (IndMet‘𝑊)
51, 3, 4, 2sspimsval 30725 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦))
61, 4imsdf 30676 . 2 (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ)
7 eqid 2731 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
87, 3imsdf 30676 . 2 (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ)
91, 2, 5, 6, 8sspmlem 30719 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   × cxp 5617  cres 5621  cfv 6487  cr 11011  NrmCVeccnv 30571  BaseSetcba 30573  IndMetcims 30578  SubSpcss 30708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-ltxr 11157  df-sub 11352  df-neg 11353  df-grpo 30480  df-gid 30481  df-ginv 30482  df-gdiv 30483  df-ablo 30532  df-vc 30546  df-nv 30579  df-va 30582  df-ba 30583  df-sm 30584  df-0v 30585  df-vs 30586  df-nmcv 30587  df-ims 30588  df-ssp 30709
This theorem is referenced by:  bnsscmcl  30855  minvecolem4a  30864
  Copyright terms: Public domain W3C validator