| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version | ||
| Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspims.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspims.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| sspims.c | ⊢ 𝐶 = (IndMet‘𝑊) |
| sspims.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspims | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspims.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspims.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 3 | sspims.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | sspims.c | . . 3 ⊢ 𝐶 = (IndMet‘𝑊) | |
| 5 | 1, 3, 4, 2 | sspimsval 30725 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦)) |
| 6 | 1, 4 | imsdf 30676 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ) |
| 7 | eqid 2731 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 8 | 7, 3 | imsdf 30676 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ) |
| 9 | 1, 2, 5, 6, 8 | sspmlem 30719 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5617 ↾ cres 5621 ‘cfv 6487 ℝcr 11011 NrmCVeccnv 30571 BaseSetcba 30573 IndMetcims 30578 SubSpcss 30708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-ltxr 11157 df-sub 11352 df-neg 11353 df-grpo 30480 df-gid 30481 df-ginv 30482 df-gdiv 30483 df-ablo 30532 df-vc 30546 df-nv 30579 df-va 30582 df-ba 30583 df-sm 30584 df-0v 30585 df-vs 30586 df-nmcv 30587 df-ims 30588 df-ssp 30709 |
| This theorem is referenced by: bnsscmcl 30855 minvecolem4a 30864 |
| Copyright terms: Public domain | W3C validator |