Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspims | Structured version Visualization version GIF version |
Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspims.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspims.d | ⊢ 𝐷 = (IndMet‘𝑈) |
sspims.c | ⊢ 𝐶 = (IndMet‘𝑊) |
sspims.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspims | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
2 | sspims.h | . 2 ⊢ 𝐻 = (SubSp‘𝑈) | |
3 | sspims.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | sspims.c | . . 3 ⊢ 𝐶 = (IndMet‘𝑊) | |
5 | 1, 3, 4, 2 | sspimsval 29100 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝐷𝑦)) |
6 | 1, 4 | imsdf 29051 | . 2 ⊢ (𝑊 ∈ NrmCVec → 𝐶:(𝑌 × 𝑌)⟶ℝ) |
7 | eqid 2738 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | 7, 3 | imsdf 29051 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐷:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶ℝ) |
9 | 1, 2, 5, 6, 8 | sspmlem 29094 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 × cxp 5587 ↾ cres 5591 ‘cfv 6433 ℝcr 10870 NrmCVeccnv 28946 BaseSetcba 28948 IndMetcims 28953 SubSpcss 29083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-ssp 29084 |
This theorem is referenced by: bnsscmcl 29230 minvecolem4a 29239 |
Copyright terms: Public domain | W3C validator |