![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndlsmidm | Structured version Visualization version GIF version |
Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
lsmub1.p | β’ β = (LSSumβπΊ) |
Ref | Expression |
---|---|
smndlsmidm | β’ (π β (SubMndβπΊ) β (π β π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6929 | . . . 4 β’ (π β (SubMndβπΊ) β πΊ β dom SubMnd) | |
2 | eqid 2731 | . . . . 5 β’ (BaseβπΊ) = (BaseβπΊ) | |
3 | 2 | submss 18727 | . . . 4 β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
4 | eqid 2731 | . . . . 5 β’ (+gβπΊ) = (+gβπΊ) | |
5 | lsmub1.p | . . . . 5 β’ β = (LSSumβπΊ) | |
6 | 2, 4, 5 | lsmvalx 19549 | . . . 4 β’ ((πΊ β dom SubMnd β§ π β (BaseβπΊ) β§ π β (BaseβπΊ)) β (π β π) = ran (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
7 | 1, 3, 3, 6 | syl3anc 1370 | . . 3 β’ (π β (SubMndβπΊ) β (π β π) = ran (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
8 | 4 | submcl 18730 | . . . . . . 7 β’ ((π β (SubMndβπΊ) β§ π₯ β π β§ π¦ β π) β (π₯(+gβπΊ)π¦) β π) |
9 | 8 | 3expb 1119 | . . . . . 6 β’ ((π β (SubMndβπΊ) β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπΊ)π¦) β π) |
10 | 9 | ralrimivva 3199 | . . . . 5 β’ (π β (SubMndβπΊ) β βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) |
11 | eqid 2731 | . . . . . 6 β’ (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦)) = (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦)) | |
12 | 11 | fmpo 8057 | . . . . 5 β’ (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦)):(π Γ π)βΆπ) |
13 | 10, 12 | sylib 217 | . . . 4 β’ (π β (SubMndβπΊ) β (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦)):(π Γ π)βΆπ) |
14 | 13 | frnd 6726 | . . 3 β’ (π β (SubMndβπΊ) β ran (π₯ β π, π¦ β π β¦ (π₯(+gβπΊ)π¦)) β π) |
15 | 7, 14 | eqsstrd 4021 | . 2 β’ (π β (SubMndβπΊ) β (π β π) β π) |
16 | 2, 5 | lsmub1x 19556 | . . 3 β’ ((π β (BaseβπΊ) β§ π β (SubMndβπΊ)) β π β (π β π)) |
17 | 3, 16 | mpancom 685 | . 2 β’ (π β (SubMndβπΊ) β π β (π β π)) |
18 | 15, 17 | eqssd 4000 | 1 β’ (π β (SubMndβπΊ) β (π β π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βwral 3060 β wss 3949 Γ cxp 5675 dom cdm 5677 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7412 β cmpo 7414 Basecbs 17149 +gcplusg 17202 SubMndcsubmnd 18705 LSSumclsm 19544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-lsm 19546 |
This theorem is referenced by: lsmidm 19573 mndlsmidm 19580 |
Copyright terms: Public domain | W3C validator |