Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndlsmidm | Structured version Visualization version GIF version |
Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
smndlsmidm | ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . . . 4 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ dom SubMnd) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | submss 18363 | . . . 4 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
4 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | lsmub1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
6 | 2, 4, 5 | lsmvalx 19159 | . . . 4 ⊢ ((𝐺 ∈ dom SubMnd ∧ 𝑈 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑈 ⊕ 𝑈) = ran (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
7 | 1, 3, 3, 6 | syl3anc 1369 | . . 3 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = ran (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
8 | 4 | submcl 18366 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑈) |
9 | 8 | 3expb 1118 | . . . . . 6 ⊢ ((𝑈 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑈) |
10 | 9 | ralrimivva 3114 | . . . . 5 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝑈) |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) | |
12 | 11 | fmpo 7881 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(+g‘𝐺)𝑦) ∈ 𝑈 ↔ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑈 × 𝑈)⟶𝑈) |
13 | 10, 12 | sylib 217 | . . . 4 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)):(𝑈 × 𝑈)⟶𝑈) |
14 | 13 | frnd 6592 | . . 3 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → ran (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ 𝑈) |
15 | 7, 14 | eqsstrd 3955 | . 2 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) ⊆ 𝑈) |
16 | 2, 5 | lsmub1x 19166 | . . 3 ⊢ ((𝑈 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑈 ⊆ (𝑈 ⊕ 𝑈)) |
17 | 3, 16 | mpancom 684 | . 2 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (𝑈 ⊕ 𝑈)) |
18 | 15, 17 | eqssd 3934 | 1 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 × cxp 5578 dom cdm 5580 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 SubMndcsubmnd 18344 LSSumclsm 19154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-lsm 19156 |
This theorem is referenced by: lsmidm 19183 mndlsmidm 19191 |
Copyright terms: Public domain | W3C validator |