Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxuni Structured version   Visualization version   GIF version

Theorem sxuni 34194
Description: The base set of a product sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxuni ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))

Proof of Theorem sxuni
StepHypRef Expression
1 sxsigon 34193 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)))
2 issgon 34124 . . 3 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ran sigAlgebra ∧ ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇)))
32simprbi 496 . 2 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
41, 3syl 17 1 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   cuni 4907   × cxp 5683  ran crn 5686  cfv 6561  (class class class)co 7431  sigAlgebracsiga 34109   ×s csx 34189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-siga 34110  df-sigagen 34140  df-sx 34190
This theorem is referenced by:  1stmbfm  34262  2ndmbfm  34263  mbfmco2  34267
  Copyright terms: Public domain W3C validator