Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxuni Structured version   Visualization version   GIF version

Theorem sxuni 34206
Description: The base set of a product sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxuni ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))

Proof of Theorem sxuni
StepHypRef Expression
1 sxsigon 34205 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)))
2 issgon 34136 . . 3 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ran sigAlgebra ∧ ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇)))
32simprbi 496 . 2 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
41, 3syl 17 1 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   cuni 4856   × cxp 5612  ran crn 5615  cfv 6481  (class class class)co 7346  sigAlgebracsiga 34121   ×s csx 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-siga 34122  df-sigagen 34152  df-sx 34202
This theorem is referenced by:  1stmbfm  34273  2ndmbfm  34274  mbfmco2  34278
  Copyright terms: Public domain W3C validator