Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxuni Structured version   Visualization version   GIF version

Theorem sxuni 33186
Description: The base set of a product sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxuni ((𝑆 ∈ βˆͺ ran sigAlgebra ∧ 𝑇 ∈ βˆͺ ran sigAlgebra) β†’ (βˆͺ 𝑆 Γ— βˆͺ 𝑇) = βˆͺ (𝑆 Γ—s 𝑇))

Proof of Theorem sxuni
StepHypRef Expression
1 sxsigon 33185 . 2 ((𝑆 ∈ βˆͺ ran sigAlgebra ∧ 𝑇 ∈ βˆͺ ran sigAlgebra) β†’ (𝑆 Γ—s 𝑇) ∈ (sigAlgebraβ€˜(βˆͺ 𝑆 Γ— βˆͺ 𝑇)))
2 issgon 33116 . . 3 ((𝑆 Γ—s 𝑇) ∈ (sigAlgebraβ€˜(βˆͺ 𝑆 Γ— βˆͺ 𝑇)) ↔ ((𝑆 Γ—s 𝑇) ∈ βˆͺ ran sigAlgebra ∧ (βˆͺ 𝑆 Γ— βˆͺ 𝑇) = βˆͺ (𝑆 Γ—s 𝑇)))
32simprbi 497 . 2 ((𝑆 Γ—s 𝑇) ∈ (sigAlgebraβ€˜(βˆͺ 𝑆 Γ— βˆͺ 𝑇)) β†’ (βˆͺ 𝑆 Γ— βˆͺ 𝑇) = βˆͺ (𝑆 Γ—s 𝑇))
41, 3syl 17 1 ((𝑆 ∈ βˆͺ ran sigAlgebra ∧ 𝑇 ∈ βˆͺ ran sigAlgebra) β†’ (βˆͺ 𝑆 Γ— βˆͺ 𝑇) = βˆͺ (𝑆 Γ—s 𝑇))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆͺ cuni 4908   Γ— cxp 5674  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  sigAlgebracsiga 33101   Γ—s csx 33181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-siga 33102  df-sigagen 33132  df-sx 33182
This theorem is referenced by:  1stmbfm  33254  2ndmbfm  33255  mbfmco2  33259
  Copyright terms: Public domain W3C validator