Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxuni | Structured version Visualization version GIF version |
Description: The base set of a product sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
Ref | Expression |
---|---|
sxuni | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxsigon 32188 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇))) | |
2 | issgon 32119 | . . 3 ⊢ ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra ∧ (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇))) | |
3 | 2 | simprbi 496 | . 2 ⊢ ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇)) → (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇)) |
4 | 1, 3 | syl 17 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∪ cuni 4841 × cxp 5589 ran crn 5592 ‘cfv 6447 (class class class)co 7295 sigAlgebracsiga 32104 ×s csx 32184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-siga 32105 df-sigagen 32135 df-sx 32185 |
This theorem is referenced by: 1stmbfm 32255 2ndmbfm 32256 mbfmco2 32260 |
Copyright terms: Public domain | W3C validator |