MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsupr Structured version   Visualization version   GIF version

Theorem iccsupr 13103
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 11865). (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 13090 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2 sstr 3925 . . . . 5 ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ)
32ancoms 458 . . . 4 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
41, 3sylan 579 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
543adant3 1130 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ⊆ ℝ)
6 ne0i 4265 . . 3 (𝐶𝑆𝑆 ≠ ∅)
763ad2ant3 1133 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ≠ ∅)
8 simplr 765 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
9 ssel 3910 . . . . . . . 8 (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵)))
10 elicc2 13073 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1110biimpd 228 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
129, 11sylan9r 508 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦𝑆 → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1312imp 406 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
1413simp3d 1142 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → 𝑦𝐵)
1514ralrimiva 3107 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦𝑆 𝑦𝐵)
16 brralrspcev 5130 . . . 4 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
178, 15, 16syl2anc 583 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
18173adant3 1130 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
195, 7, 183jca 1126 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  cr 10801  cle 10941  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015
This theorem is referenced by:  supicc  13162  hoidmv1lelem1  44019  hoidmv1lelem3  44021  hoidmvlelem1  44023
  Copyright terms: Public domain W3C validator