MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsupr Structured version   Visualization version   GIF version

Theorem iccsupr 13502
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 12255). (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 13489 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2 sstr 4017 . . . . 5 ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ)
32ancoms 458 . . . 4 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
41, 3sylan 579 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
543adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ⊆ ℝ)
6 ne0i 4364 . . 3 (𝐶𝑆𝑆 ≠ ∅)
763ad2ant3 1135 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ≠ ∅)
8 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
9 ssel 4002 . . . . . . . 8 (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵)))
10 elicc2 13472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1110biimpd 229 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
129, 11sylan9r 508 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦𝑆 → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1312imp 406 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
1413simp3d 1144 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → 𝑦𝐵)
1514ralrimiva 3152 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦𝑆 𝑦𝐵)
16 brralrspcev 5226 . . . 4 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
178, 15, 16syl2anc 583 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
18173adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
195, 7, 183jca 1128 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  (class class class)co 7448  cr 11183  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414
This theorem is referenced by:  supicc  13561  hoidmv1lelem1  46512  hoidmv1lelem3  46514  hoidmvlelem1  46516
  Copyright terms: Public domain W3C validator