MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsupr Structured version   Visualization version   GIF version

Theorem iccsupr 13410
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 12150). (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 13397 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2 sstr 3958 . . . . 5 ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ)
32ancoms 458 . . . 4 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
41, 3sylan 580 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
543adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ⊆ ℝ)
6 ne0i 4307 . . 3 (𝐶𝑆𝑆 ≠ ∅)
763ad2ant3 1135 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ≠ ∅)
8 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
9 ssel 3943 . . . . . . . 8 (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵)))
10 elicc2 13379 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1110biimpd 229 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
129, 11sylan9r 508 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦𝑆 → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1312imp 406 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
1413simp3d 1144 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → 𝑦𝐵)
1514ralrimiva 3126 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦𝑆 𝑦𝐵)
16 brralrspcev 5170 . . . 4 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
178, 15, 16syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
18173adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
195, 7, 183jca 1128 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  (class class class)co 7390  cr 11074  cle 11216  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320
This theorem is referenced by:  supicc  13469  hoidmv1lelem1  46596  hoidmv1lelem3  46598  hoidmvlelem1  46600
  Copyright terms: Public domain W3C validator