![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1mul | Structured version Visualization version GIF version |
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendo1mul | β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (( I βΎ π) β π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | tendof.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
3 | tendof.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendof 40147 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β π:πβΆπ) |
5 | fcoi2 6760 | . 2 β’ (π:πβΆπ β (( I βΎ π) β π) = π) | |
6 | 4, 5 | syl 17 | 1 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (( I βΎ π) β π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 I cid 5566 βΎ cres 5671 β ccom 5673 βΆwf 6533 βcfv 6537 HLchlt 38733 LHypclh 39368 LTrncltrn 39485 TEndoctendo 40136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8824 df-tendo 40139 |
This theorem is referenced by: erng1lem 40371 erngdvlem3 40374 erngdvlem3-rN 40382 erngdvlem4-rN 40383 |
Copyright terms: Public domain | W3C validator |