Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo1mul Structured version   Visualization version   GIF version

Theorem tendo1mul 37348
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo1mul (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈)

Proof of Theorem tendo1mul
StepHypRef Expression
1 tendof.h . . 3 𝐻 = (LHyp‘𝐾)
2 tendof.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendof.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 37341 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → 𝑈:𝑇𝑇)
5 fcoi2 6382 . 2 (𝑈:𝑇𝑇 → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈)
64, 5syl 17 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050   I cid 5311  cres 5409  ccom 5411  wf 6184  cfv 6188  HLchlt 35928  LHypclh 36562  LTrncltrn 36679  TEndoctendo 37330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-map 8208  df-tendo 37333
This theorem is referenced by:  erng1lem  37565  erngdvlem3  37568  erngdvlem3-rN  37576  erngdvlem4-rN  37577
  Copyright terms: Public domain W3C validator