![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1mul | Structured version Visualization version GIF version |
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendo1mul | β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (( I βΎ π) β π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | tendof.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
3 | tendof.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendof 39629 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β π:πβΆπ) |
5 | fcoi2 6766 | . 2 β’ (π:πβΆπ β (( I βΎ π) β π) = π) | |
6 | 4, 5 | syl 17 | 1 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (( I βΎ π) β π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 I cid 5573 βΎ cres 5678 β ccom 5680 βΆwf 6539 βcfv 6543 HLchlt 38215 LHypclh 38850 LTrncltrn 38967 TEndoctendo 39618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-tendo 39621 |
This theorem is referenced by: erng1lem 39853 erngdvlem3 39856 erngdvlem3-rN 39864 erngdvlem4-rN 39865 |
Copyright terms: Public domain | W3C validator |