![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoidcl | Structured version Visualization version GIF version |
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoidcl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2778 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | f1oi 6430 | . . 3 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
8 | f1of 6393 | . . 3 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇):𝑇⟶𝑇) |
10 | 2, 3 | ltrnco 36878 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑓 ∘ 𝑔) ∈ 𝑇) |
11 | fvresi 6708 | . . . 4 ⊢ ((𝑓 ∘ 𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) |
13 | fvresi 6708 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓) | |
14 | 13 | 3ad2ant2 1125 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
15 | fvresi 6708 | . . . . 5 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
16 | 15 | 3ad2ant3 1126 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
17 | 14, 16 | coeq12d 5534 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓 ∘ 𝑔)) |
18 | 12, 17 | eqtr4d 2817 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔))) |
19 | 13 | adantl 475 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
20 | 19 | fveq2d 6452 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓)) |
21 | hllat 35522 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
22 | 21 | ad2antrr 716 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → 𝐾 ∈ Lat) |
23 | eqid 2778 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
24 | 23, 2, 3, 4 | trlcl 36323 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
25 | 23, 1 | latref 17443 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
26 | 22, 24, 25 | syl2anc 579 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
27 | 20, 26 | eqbrtrd 4910 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
28 | 1, 2, 3, 4, 5, 6, 9, 18, 27 | istendod 36921 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 I cid 5262 ↾ cres 5359 ∘ ccom 5361 ⟶wf 6133 –1-1-onto→wf1o 6136 ‘cfv 6137 Basecbs 16259 lecple 16349 Latclat 17435 HLchlt 35509 LHypclh 36143 LTrncltrn 36260 trLctrl 36317 TEndoctendo 36911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-riotaBAD 35112 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-undef 7683 df-map 8144 df-proset 17318 df-poset 17336 df-plt 17348 df-lub 17364 df-glb 17365 df-join 17366 df-meet 17367 df-p0 17429 df-p1 17430 df-lat 17436 df-clat 17498 df-oposet 35335 df-ol 35337 df-oml 35338 df-covers 35425 df-ats 35426 df-atl 35457 df-cvlat 35481 df-hlat 35510 df-llines 35657 df-lplanes 35658 df-lvols 35659 df-lines 35660 df-psubsp 35662 df-pmap 35663 df-padd 35955 df-lhyp 36147 df-laut 36148 df-ldil 36263 df-ltrn 36264 df-trl 36318 df-tendo 36914 |
This theorem is referenced by: cdleml8 37142 erng1lem 37146 erngdvlem3 37149 erng1r 37154 erngdvlem3-rN 37157 erngdvlem4-rN 37158 dvalveclem 37184 dvhlveclem 37267 dvheveccl 37271 dvhopN 37275 diclspsn 37353 cdlemn4 37357 cdlemn4a 37358 cdlemn11a 37366 dihord6apre 37415 dihatlat 37493 dihatexv 37497 |
Copyright terms: Public domain | W3C validator |