Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoidcl Structured version   Visualization version   GIF version

Theorem tendoidcl 40726
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoidcl ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)

Proof of Theorem tendoidcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (le‘𝐾) = (le‘𝐾)
2 tendof.h . 2 𝐻 = (LHyp‘𝐾)
3 tendof.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2740 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 f1oi 6900 . . 3 ( I ↾ 𝑇):𝑇1-1-onto𝑇
8 f1of 6862 . . 3 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
97, 8mp1i 13 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇):𝑇𝑇)
102, 3ltrnco 40676 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (𝑓𝑔) ∈ 𝑇)
11 fvresi 7207 . . . 4 ((𝑓𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
1210, 11syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
13 fvresi 7207 . . . . 5 (𝑓𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓)
14133ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
15 fvresi 7207 . . . . 5 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
16153ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
1714, 16coeq12d 5889 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓𝑔))
1812, 17eqtr4d 2783 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)))
1913adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
2019fveq2d 6924 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓))
21 hllat 39319 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2221ad2antrr 725 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐾 ∈ Lat)
23 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2423, 2, 3, 4trlcl 40121 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
2523, 1latref 18511 . . . 4 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2622, 24, 25syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2720, 26eqbrtrd 5188 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
281, 2, 3, 4, 5, 6, 9, 18, 27istendod 40719 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  lecple 17318  Latclat 18501  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712
This theorem is referenced by:  cdleml8  40940  erng1lem  40944  erngdvlem3  40947  erng1r  40952  erngdvlem3-rN  40955  erngdvlem4-rN  40956  dvalveclem  40982  dvhlveclem  41065  dvheveccl  41069  dvhopN  41073  diclspsn  41151  cdlemn4  41155  cdlemn4a  41156  cdlemn11a  41164  dihord6apre  41213  dihatlat  41291  dihatexv  41295
  Copyright terms: Public domain W3C validator