| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoidcl | Structured version Visualization version GIF version | ||
| Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendoidcl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | tendof.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendof.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 5 | tendof.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | f1oi 6838 | . . 3 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
| 8 | f1of 6800 | . . 3 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇):𝑇⟶𝑇) |
| 10 | 2, 3 | ltrnco 40713 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑓 ∘ 𝑔) ∈ 𝑇) |
| 11 | fvresi 7147 | . . . 4 ⊢ ((𝑓 ∘ 𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) |
| 13 | fvresi 7147 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓) | |
| 14 | 13 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
| 15 | fvresi 7147 | . . . . 5 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
| 16 | 15 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
| 17 | 14, 16 | coeq12d 5828 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓 ∘ 𝑔)) |
| 18 | 12, 17 | eqtr4d 2767 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔))) |
| 19 | 13 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
| 20 | 19 | fveq2d 6862 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓)) |
| 21 | hllat 39356 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 22 | 21 | ad2antrr 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 23 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 24 | 23, 2, 3, 4 | trlcl 40158 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 25 | 23, 1 | latref 18400 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 27 | 20, 26 | eqbrtrd 5129 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 28 | 1, 2, 3, 4, 5, 6, 9, 18, 27 | istendod 40756 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 I cid 5532 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 lecple 17227 Latclat 18390 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 |
| This theorem is referenced by: cdleml8 40977 erng1lem 40981 erngdvlem3 40984 erng1r 40989 erngdvlem3-rN 40992 erngdvlem4-rN 40993 dvalveclem 41019 dvhlveclem 41102 dvheveccl 41106 dvhopN 41110 diclspsn 41188 cdlemn4 41192 cdlemn4a 41193 cdlemn11a 41201 dihord6apre 41250 dihatlat 41328 dihatexv 41332 |
| Copyright terms: Public domain | W3C validator |