Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoidcl Structured version   Visualization version   GIF version

Theorem tendoidcl 40736
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoidcl ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)

Proof of Theorem tendoidcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
2 tendof.h . 2 𝐻 = (LHyp‘𝐾)
3 tendof.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2729 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 f1oi 6820 . . 3 ( I ↾ 𝑇):𝑇1-1-onto𝑇
8 f1of 6782 . . 3 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
97, 8mp1i 13 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇):𝑇𝑇)
102, 3ltrnco 40686 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (𝑓𝑔) ∈ 𝑇)
11 fvresi 7129 . . . 4 ((𝑓𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
1210, 11syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
13 fvresi 7129 . . . . 5 (𝑓𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓)
14133ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
15 fvresi 7129 . . . . 5 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
16153ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
1714, 16coeq12d 5818 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓𝑔))
1812, 17eqtr4d 2767 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)))
1913adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
2019fveq2d 6844 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓))
21 hllat 39329 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2221ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐾 ∈ Lat)
23 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2423, 2, 3, 4trlcl 40131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
2523, 1latref 18376 . . . 4 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2622, 24, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2720, 26eqbrtrd 5124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
281, 2, 3, 4, 5, 6, 9, 18, 27istendod 40729 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102   I cid 5525  cres 5633  ccom 5635  wf 6495  1-1-ontowf1o 6498  cfv 6499  Basecbs 17155  lecple 17203  Latclat 18366  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  TEndoctendo 40719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tendo 40722
This theorem is referenced by:  cdleml8  40950  erng1lem  40954  erngdvlem3  40957  erng1r  40962  erngdvlem3-rN  40965  erngdvlem4-rN  40966  dvalveclem  40992  dvhlveclem  41075  dvheveccl  41079  dvhopN  41083  diclspsn  41161  cdlemn4  41165  cdlemn4a  41166  cdlemn11a  41174  dihord6apre  41223  dihatlat  41301  dihatexv  41305
  Copyright terms: Public domain W3C validator