Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoidcl | Structured version Visualization version GIF version |
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoidcl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2737 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | f1oi 6791 | . . 3 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
8 | f1of 6753 | . . 3 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇):𝑇⟶𝑇) |
10 | 2, 3 | ltrnco 38938 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑓 ∘ 𝑔) ∈ 𝑇) |
11 | fvresi 7084 | . . . 4 ⊢ ((𝑓 ∘ 𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) |
13 | fvresi 7084 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓) | |
14 | 13 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
15 | fvresi 7084 | . . . . 5 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
16 | 15 | 3ad2ant3 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
17 | 14, 16 | coeq12d 5793 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓 ∘ 𝑔)) |
18 | 12, 17 | eqtr4d 2780 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔))) |
19 | 13 | adantl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
20 | 19 | fveq2d 6815 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓)) |
21 | hllat 37581 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
22 | 21 | ad2antrr 723 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → 𝐾 ∈ Lat) |
23 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
24 | 23, 2, 3, 4 | trlcl 38383 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
25 | 23, 1 | latref 18229 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
27 | 20, 26 | eqbrtrd 5109 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
28 | 1, 2, 3, 4, 5, 6, 9, 18, 27 | istendod 38981 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 I cid 5506 ↾ cres 5609 ∘ ccom 5611 ⟶wf 6461 –1-1-onto→wf1o 6464 ‘cfv 6465 Basecbs 16982 lecple 17039 Latclat 18219 HLchlt 37568 LHypclh 38203 LTrncltrn 38320 trLctrl 38377 TEndoctendo 38971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-riotaBAD 37171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-undef 8136 df-map 8665 df-proset 18083 df-poset 18101 df-plt 18118 df-lub 18134 df-glb 18135 df-join 18136 df-meet 18137 df-p0 18213 df-p1 18214 df-lat 18220 df-clat 18287 df-oposet 37394 df-ol 37396 df-oml 37397 df-covers 37484 df-ats 37485 df-atl 37516 df-cvlat 37540 df-hlat 37569 df-llines 37717 df-lplanes 37718 df-lvols 37719 df-lines 37720 df-psubsp 37722 df-pmap 37723 df-padd 38015 df-lhyp 38207 df-laut 38208 df-ldil 38323 df-ltrn 38324 df-trl 38378 df-tendo 38974 |
This theorem is referenced by: cdleml8 39202 erng1lem 39206 erngdvlem3 39209 erng1r 39214 erngdvlem3-rN 39217 erngdvlem4-rN 39218 dvalveclem 39244 dvhlveclem 39327 dvheveccl 39331 dvhopN 39335 diclspsn 39413 cdlemn4 39417 cdlemn4a 39418 cdlemn11a 39426 dihord6apre 39475 dihatlat 39553 dihatexv 39557 |
Copyright terms: Public domain | W3C validator |