| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoidcl | Structured version Visualization version GIF version | ||
| Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendoidcl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | tendof.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendof.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | eqid 2731 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 5 | tendof.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | f1oi 6801 | . . 3 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
| 8 | f1of 6763 | . . 3 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
| 9 | 7, 8 | mp1i 13 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇):𝑇⟶𝑇) |
| 10 | 2, 3 | ltrnco 40828 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑓 ∘ 𝑔) ∈ 𝑇) |
| 11 | fvresi 7107 | . . . 4 ⊢ ((𝑓 ∘ 𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = (𝑓 ∘ 𝑔)) |
| 13 | fvresi 7107 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓) | |
| 14 | 13 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
| 15 | fvresi 7107 | . . . . 5 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
| 16 | 15 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
| 17 | 14, 16 | coeq12d 5803 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓 ∘ 𝑔)) |
| 18 | 12, 17 | eqtr4d 2769 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝑇)‘(𝑓 ∘ 𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔))) |
| 19 | 13 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓) |
| 20 | 19 | fveq2d 6826 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓)) |
| 21 | hllat 39472 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 22 | 21 | ad2antrr 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 23 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 24 | 23, 2, 3, 4 | trlcl 40273 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 25 | 23, 1 | latref 18347 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 26 | 22, 24, 25 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 27 | 20, 26 | eqbrtrd 5111 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) |
| 28 | 1, 2, 3, 4, 5, 6, 9, 18, 27 | istendod 40871 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 I cid 5508 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17120 lecple 17168 Latclat 18337 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 trLctrl 40267 TEndoctendo 40861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 |
| This theorem is referenced by: cdleml8 41092 erng1lem 41096 erngdvlem3 41099 erng1r 41104 erngdvlem3-rN 41107 erngdvlem4-rN 41108 dvalveclem 41134 dvhlveclem 41217 dvheveccl 41221 dvhopN 41225 diclspsn 41303 cdlemn4 41307 cdlemn4a 41308 cdlemn11a 41316 dihord6apre 41365 dihatlat 41443 dihatexv 41447 |
| Copyright terms: Public domain | W3C validator |