Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoidcl Structured version   Visualization version   GIF version

Theorem tendoidcl 40770
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoidcl ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)

Proof of Theorem tendoidcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (le‘𝐾) = (le‘𝐾)
2 tendof.h . 2 𝐻 = (LHyp‘𝐾)
3 tendof.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2730 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 f1oi 6841 . . 3 ( I ↾ 𝑇):𝑇1-1-onto𝑇
8 f1of 6803 . . 3 (( I ↾ 𝑇):𝑇1-1-onto𝑇 → ( I ↾ 𝑇):𝑇𝑇)
97, 8mp1i 13 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇):𝑇𝑇)
102, 3ltrnco 40720 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (𝑓𝑔) ∈ 𝑇)
11 fvresi 7150 . . . 4 ((𝑓𝑔) ∈ 𝑇 → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
1210, 11syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = (𝑓𝑔))
13 fvresi 7150 . . . . 5 (𝑓𝑇 → (( I ↾ 𝑇)‘𝑓) = 𝑓)
14133ad2ant2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
15 fvresi 7150 . . . . 5 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
16153ad2ant3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
1714, 16coeq12d 5831 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)) = (𝑓𝑔))
1812, 17eqtr4d 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇𝑔𝑇) → (( I ↾ 𝑇)‘(𝑓𝑔)) = ((( I ↾ 𝑇)‘𝑓) ∘ (( I ↾ 𝑇)‘𝑔)))
1913adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (( I ↾ 𝑇)‘𝑓) = 𝑓)
2019fveq2d 6865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓)) = (((trL‘𝐾)‘𝑊)‘𝑓))
21 hllat 39363 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2221ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐾 ∈ Lat)
23 eqid 2730 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2423, 2, 3, 4trlcl 40165 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
2523, 1latref 18407 . . . 4 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2622, 24, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
2720, 26eqbrtrd 5132 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘(( I ↾ 𝑇)‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))
281, 2, 3, 4, 5, 6, 9, 18, 27istendod 40763 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110   I cid 5535  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  Basecbs 17186  lecple 17234  Latclat 18397  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  TEndoctendo 40753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756
This theorem is referenced by:  cdleml8  40984  erng1lem  40988  erngdvlem3  40991  erng1r  40996  erngdvlem3-rN  40999  erngdvlem4-rN  41000  dvalveclem  41026  dvhlveclem  41109  dvheveccl  41113  dvhopN  41117  diclspsn  41195  cdlemn4  41199  cdlemn4a  41200  cdlemn11a  41208  dihord6apre  41257  dihatlat  41335  dihatexv  41339
  Copyright terms: Public domain W3C validator