Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erng1lem Structured version   Visualization version   GIF version

Theorem erng1lem 40492
Description: Value of the endomorphism division ring unity. (Contributed by NM, 12-Oct-2013.)
Hypotheses
Ref Expression
erng1.h 𝐻 = (LHypβ€˜πΎ)
erng1.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
erng1.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
erng1.d 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
erng1.r ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
Assertion
Ref Expression
erng1lem ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (1rβ€˜π·) = ( I β†Ύ 𝑇))

Proof of Theorem erng1lem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 erng1.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 erng1.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 erng1.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
41, 2, 3tendoidcl 40274 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
5 erng1.d . . . 4 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
6 eqid 2728 . . . 4 (Baseβ€˜π·) = (Baseβ€˜π·)
71, 2, 3, 5, 6erngbase 40306 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π·) = 𝐸)
84, 7eleqtrrd 2832 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ (Baseβ€˜π·))
97eleq2d 2815 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑒 ∈ (Baseβ€˜π·) ↔ 𝑒 ∈ 𝐸))
10 simpl 481 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
114adantr 479 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
12 simpr 483 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ 𝑒 ∈ 𝐸)
13 eqid 2728 . . . . . . . . 9 (.rβ€˜π·) = (.rβ€˜π·)
141, 2, 3, 5, 13erngmul 40311 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (( I β†Ύ 𝑇) ∈ 𝐸 ∧ 𝑒 ∈ 𝐸)) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = (( I β†Ύ 𝑇) ∘ 𝑒))
1510, 11, 12, 14syl12anc 835 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = (( I β†Ύ 𝑇) ∘ 𝑒))
161, 2, 3tendo1mul 40275 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (( I β†Ύ 𝑇) ∘ 𝑒) = 𝑒)
1715, 16eqtrd 2768 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒)
181, 2, 3, 5, 13erngmul 40311 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑒 ∈ 𝐸 ∧ ( I β†Ύ 𝑇) ∈ 𝐸)) β†’ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = (𝑒 ∘ ( I β†Ύ 𝑇)))
1910, 12, 11, 18syl12anc 835 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = (𝑒 ∘ ( I β†Ύ 𝑇)))
201, 2, 3tendo1mulr 40276 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (𝑒 ∘ ( I β†Ύ 𝑇)) = 𝑒)
2119, 20eqtrd 2768 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒)
2217, 21jca 510 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑒 ∈ 𝐸) β†’ ((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒))
2322ex 411 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑒 ∈ 𝐸 β†’ ((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒)))
249, 23sylbid 239 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑒 ∈ (Baseβ€˜π·) β†’ ((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒)))
2524ralrimiv 3142 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆ€π‘’ ∈ (Baseβ€˜π·)((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒))
26 erng1.r . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Ring)
27 eqid 2728 . . . 4 (1rβ€˜π·) = (1rβ€˜π·)
286, 13, 27isringid 20214 . . 3 (𝐷 ∈ Ring β†’ ((( I β†Ύ 𝑇) ∈ (Baseβ€˜π·) ∧ βˆ€π‘’ ∈ (Baseβ€˜π·)((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒)) ↔ (1rβ€˜π·) = ( I β†Ύ 𝑇)))
2926, 28syl 17 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((( I β†Ύ 𝑇) ∈ (Baseβ€˜π·) ∧ βˆ€π‘’ ∈ (Baseβ€˜π·)((( I β†Ύ 𝑇)(.rβ€˜π·)𝑒) = 𝑒 ∧ (𝑒(.rβ€˜π·)( I β†Ύ 𝑇)) = 𝑒)) ↔ (1rβ€˜π·) = ( I β†Ύ 𝑇)))
308, 25, 29mpbi2and 710 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (1rβ€˜π·) = ( I β†Ύ 𝑇))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058   I cid 5579   β†Ύ cres 5684   ∘ ccom 5686  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  .rcmulr 17241  1rcur 20128  Ringcrg 20180  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  TEndoctendo 40257  EDRingcedring 40258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-undef 8285  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-0g 17430  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mgp 20082  df-ur 20129  df-ring 20182  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664  df-tendo 40260  df-edring 40262
This theorem is referenced by:  erngdvlem4  40496
  Copyright terms: Public domain W3C validator