![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1lem | Structured version Visualization version GIF version |
Description: Value of the endomorphism division ring unity. (Contributed by NM, 12-Oct-2013.) |
Ref | Expression |
---|---|
erng1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erng1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erng1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erng1.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng1.r | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
Ref | Expression |
---|---|
erng1lem | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erng1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erng1.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendoidcl 40372 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
5 | erng1.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
6 | eqid 2725 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | 1, 2, 3, 5, 6 | erngbase 40404 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
8 | 4, 7 | eleqtrrd 2828 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
9 | 7 | eleq2d 2811 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢 ∈ 𝐸)) |
10 | simpl 481 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 4 | adantr 479 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ( I ↾ 𝑇) ∈ 𝐸) |
12 | simpr 483 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → 𝑢 ∈ 𝐸) | |
13 | eqid 2725 | . . . . . . . . 9 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
14 | 1, 2, 3, 5, 13 | erngmul 40409 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (( I ↾ 𝑇) ∘ 𝑢)) |
15 | 10, 11, 12, 14 | syl12anc 835 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (( I ↾ 𝑇) ∘ 𝑢)) |
16 | 1, 2, 3 | tendo1mul 40373 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢) |
17 | 15, 16 | eqtrd 2765 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢) |
18 | 1, 2, 3, 5, 13 | erngmul 40409 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (𝑢 ∘ ( I ↾ 𝑇))) |
19 | 10, 12, 11, 18 | syl12anc 835 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (𝑢 ∘ ( I ↾ 𝑇))) |
20 | 1, 2, 3 | tendo1mulr 40374 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢) |
21 | 19, 20 | eqtrd 2765 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢) |
22 | 17, 21 | jca 510 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
23 | 22 | ex 411 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ 𝐸 → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
24 | 9, 23 | sylbid 239 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
25 | 24 | ralrimiv 3134 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
26 | erng1.r | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | |
27 | eqid 2725 | . . . 4 ⊢ (1r‘𝐷) = (1r‘𝐷) | |
28 | 6, 13, 27 | isringid 20219 | . . 3 ⊢ (𝐷 ∈ Ring → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
29 | 26, 28 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
30 | 8, 25, 29 | mpbi2and 710 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 I cid 5575 ↾ cres 5680 ∘ ccom 5682 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 1rcur 20133 Ringcrg 20185 HLchlt 38952 LHypclh 39587 LTrncltrn 39704 TEndoctendo 40355 EDRingcedring 40356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-riotaBAD 38555 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-0g 17426 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mgp 20087 df-ur 20134 df-ring 20187 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-llines 39101 df-lplanes 39102 df-lvols 39103 df-lines 39104 df-psubsp 39106 df-pmap 39107 df-padd 39399 df-lhyp 39591 df-laut 39592 df-ldil 39707 df-ltrn 39708 df-trl 39762 df-tendo 40358 df-edring 40360 |
This theorem is referenced by: erngdvlem4 40594 |
Copyright terms: Public domain | W3C validator |