| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1mulr | Structured version Visualization version GIF version | ||
| Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendo1mulr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendof.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tendof.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | tendof.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendof 40801 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → 𝑈:𝑇⟶𝑇) |
| 5 | fcoi1 6697 | . 2 ⊢ (𝑈:𝑇⟶𝑇 → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 I cid 5510 ↾ cres 5618 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 TEndoctendo 40790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-tendo 40793 |
| This theorem is referenced by: erng1lem 41025 erngdvlem3 41028 erngdvlem3-rN 41036 erngdvlem4-rN 41037 dvhopN 41154 diclspsn 41232 dih1dimatlem0 41366 |
| Copyright terms: Public domain | W3C validator |