Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1mulr | Structured version Visualization version GIF version |
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendo1mulr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | tendof.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | tendof.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendof 38339 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → 𝑈:𝑇⟶𝑇) |
5 | fcoi1 6537 | . 2 ⊢ (𝑈:𝑇⟶𝑇 → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) | |
6 | 4, 5 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 I cid 5429 ↾ cres 5526 ∘ ccom 5528 ⟶wf 6331 ‘cfv 6335 HLchlt 36926 LHypclh 37560 LTrncltrn 37677 TEndoctendo 38328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-tendo 38331 |
This theorem is referenced by: erng1lem 38563 erngdvlem3 38566 erngdvlem3-rN 38574 erngdvlem4-rN 38575 dvhopN 38692 diclspsn 38770 dih1dimatlem0 38904 |
Copyright terms: Public domain | W3C validator |