![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1mulr | Structured version Visualization version GIF version |
Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
tendof.h | β’ π» = (LHypβπΎ) |
tendof.t | β’ π = ((LTrnβπΎ)βπ) |
tendof.e | β’ πΈ = ((TEndoβπΎ)βπ) |
Ref | Expression |
---|---|
tendo1mulr | β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (π β ( I βΎ π)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | tendof.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
3 | tendof.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendof 40291 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β π:πβΆπ) |
5 | fcoi1 6765 | . 2 β’ (π:πβΆπ β (π β ( I βΎ π)) = π) | |
6 | 4, 5 | syl 17 | 1 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (π β ( I βΎ π)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 I cid 5569 βΎ cres 5674 β ccom 5676 βΆwf 6538 βcfv 6542 HLchlt 38877 LHypclh 39512 LTrncltrn 39629 TEndoctendo 40280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-map 8843 df-tendo 40283 |
This theorem is referenced by: erng1lem 40515 erngdvlem3 40518 erngdvlem3-rN 40526 erngdvlem4-rN 40527 dvhopN 40644 diclspsn 40722 dih1dimatlem0 40856 |
Copyright terms: Public domain | W3C validator |