Proof of Theorem tendocnv
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | tendosp.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | tendosp.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
4 | | tendosp.e |
. . . . . 6
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
5 | 2, 3, 4 | tendocl 38781 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | 6, 2, 3 | ltrn1o 38138 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐹) ∈ 𝑇) → (𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
8 | 1, 5, 7 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
9 | | f1ococnv1 6745 |
. . . 4
⊢ ((𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) = ( I ↾ (Base‘𝐾))) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) = ( I ↾ (Base‘𝐾))) |
11 | 10 | coeq1d 5770 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ ◡(𝑆‘𝐹)) = (( I ↾ (Base‘𝐾)) ∘ ◡(𝑆‘𝐹))) |
12 | | simp2 1136 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝑆 ∈ 𝐸) |
13 | 6, 2, 4 | tendoid 38787 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾
(Base‘𝐾))) |
14 | 1, 12, 13 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾
(Base‘𝐾))) |
15 | 6, 2, 3 | ltrn1o 38138 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
16 | 15 | 3adant2 1130 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
17 | | f1ococnv2 6743 |
. . . . . . . . 9
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝐾))) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐹 ∘ ◡𝐹) = ( I ↾ (Base‘𝐾))) |
19 | 18 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘(𝐹 ∘ ◡𝐹)) = (𝑆‘( I ↾ (Base‘𝐾)))) |
20 | | f1ococnv2 6743 |
. . . . . . . 8
⊢ ((𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹)) = ( I ↾ (Base‘𝐾))) |
21 | 8, 20 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹)) = ( I ↾ (Base‘𝐾))) |
22 | 14, 19, 21 | 3eqtr4rd 2789 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹)) = (𝑆‘(𝐹 ∘ ◡𝐹))) |
23 | | simp3 1137 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) |
24 | 2, 3 | ltrncnv 38160 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
25 | 24 | 3adant2 1130 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
26 | 2, 3, 4 | tendospdi1 39034 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ ◡𝐹)) = ((𝑆‘𝐹) ∘ (𝑆‘◡𝐹))) |
27 | 1, 12, 23, 25, 26 | syl13anc 1371 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘(𝐹 ∘ ◡𝐹)) = ((𝑆‘𝐹) ∘ (𝑆‘◡𝐹))) |
28 | 22, 27 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹)) = ((𝑆‘𝐹) ∘ (𝑆‘◡𝐹))) |
29 | 28 | coeq2d 5771 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (◡(𝑆‘𝐹) ∘ ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹))) = (◡(𝑆‘𝐹) ∘ ((𝑆‘𝐹) ∘ (𝑆‘◡𝐹)))) |
30 | | coass 6169 |
. . . 4
⊢ ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ ◡(𝑆‘𝐹)) = (◡(𝑆‘𝐹) ∘ ((𝑆‘𝐹) ∘ ◡(𝑆‘𝐹))) |
31 | | coass 6169 |
. . . 4
⊢ ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ (𝑆‘◡𝐹)) = (◡(𝑆‘𝐹) ∘ ((𝑆‘𝐹) ∘ (𝑆‘◡𝐹))) |
32 | 29, 30, 31 | 3eqtr4g 2803 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ ◡(𝑆‘𝐹)) = ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ (𝑆‘◡𝐹))) |
33 | 10 | coeq1d 5770 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ (𝑆‘◡𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆‘◡𝐹))) |
34 | 2, 3, 4 | tendocl 38781 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ ◡𝐹 ∈ 𝑇) → (𝑆‘◡𝐹) ∈ 𝑇) |
35 | 25, 34 | syld3an3 1408 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘◡𝐹) ∈ 𝑇) |
36 | 6, 2, 3 | ltrn1o 38138 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘◡𝐹) ∈ 𝑇) → (𝑆‘◡𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
37 | 1, 35, 36 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘◡𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
38 | | f1of 6716 |
. . . 4
⊢ ((𝑆‘◡𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆‘◡𝐹):(Base‘𝐾)⟶(Base‘𝐾)) |
39 | | fcoi2 6649 |
. . . 4
⊢ ((𝑆‘◡𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆‘◡𝐹)) = (𝑆‘◡𝐹)) |
40 | 37, 38, 39 | 3syl 18 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆‘◡𝐹)) = (𝑆‘◡𝐹)) |
41 | 32, 33, 40 | 3eqtrd 2782 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((◡(𝑆‘𝐹) ∘ (𝑆‘𝐹)) ∘ ◡(𝑆‘𝐹)) = (𝑆‘◡𝐹)) |
42 | 2, 3 | ltrncnv 38160 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝐹) ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ 𝑇) |
43 | 1, 5, 42 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ 𝑇) |
44 | 6, 2, 3 | ltrn1o 38138 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡(𝑆‘𝐹) ∈ 𝑇) → ◡(𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
45 | 1, 43, 44 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
46 | | f1of 6716 |
. . 3
⊢ (◡(𝑆‘𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡(𝑆‘𝐹):(Base‘𝐾)⟶(Base‘𝐾)) |
47 | | fcoi2 6649 |
. . 3
⊢ (◡(𝑆‘𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ ◡(𝑆‘𝐹)) = ◡(𝑆‘𝐹)) |
48 | 45, 46, 47 | 3syl 18 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (( I ↾ (Base‘𝐾)) ∘ ◡(𝑆‘𝐹)) = ◡(𝑆‘𝐹)) |
49 | 11, 41, 48 | 3eqtr3rd 2787 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) = (𝑆‘◡𝐹)) |