Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocnv Structured version   Visualization version   GIF version

Theorem tendocnv 41010
Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))

Proof of Theorem tendocnv
StepHypRef Expression
1 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendosp.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 tendosp.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendosp.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
52, 3, 4tendocl 40756 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
6 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
76, 2, 3ltrn1o 40113 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
81, 5, 7syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 f1ococnv1 6831 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
1110coeq1d 5827 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
12 simp2 1137 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆𝐸)
136, 2, 4tendoid 40762 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
141, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
156, 2, 3ltrn1o 40113 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16153adant2 1131 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
17 f1ococnv2 6829 . . . . . . . . 9 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1918fveq2d 6864 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = (𝑆‘( I ↾ (Base‘𝐾))))
20 f1ococnv2 6829 . . . . . . . 8 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
218, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
2214, 19, 213eqtr4rd 2776 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = (𝑆‘(𝐹𝐹)))
23 simp3 1138 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
242, 3ltrncnv 40135 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
25243adant2 1131 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
262, 3, 4tendospdi1 41009 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐹𝑇)) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
271, 12, 23, 25, 26syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2822, 27eqtrd 2765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2928coeq2d 5828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))))
30 coass 6240 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
31 coass 6240 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
3229, 30, 313eqtr4g 2790 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)))
3310coeq1d 5827 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
342, 3, 4tendocl 40756 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
3525, 34syld3an3 1411 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
366, 2, 3ltrn1o 40113 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
371, 35, 36syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
38 f1of 6802 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
39 fcoi2 6737 . . . 4 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4037, 38, 393syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4132, 33, 403eqtrd 2769 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (𝑆𝐹))
422, 3ltrncnv 40135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹) ∈ 𝑇)
431, 5, 42syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
446, 2, 3ltrn1o 40113 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 43, 44syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6802 . . 3 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi2 6737 . . 3 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4845, 46, 473syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4911, 41, 483eqtr3rd 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   I cid 5534  ccnv 5639  cres 5642  ccom 5644  wf 6509  1-1-ontowf1o 6512  cfv 6513  Basecbs 17185  HLchlt 39338  LHypclh 39973  LTrncltrn 40090  TEndoctendo 40741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tendo 40744
This theorem is referenced by:  tendospcanN  41012  dihjatcclem4  41410
  Copyright terms: Public domain W3C validator