Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocnv Structured version   Visualization version   GIF version

Theorem tendocnv 39035
Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))

Proof of Theorem tendocnv
StepHypRef Expression
1 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendosp.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 tendosp.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendosp.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
52, 3, 4tendocl 38781 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
6 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
76, 2, 3ltrn1o 38138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
81, 5, 7syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 f1ococnv1 6745 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
1110coeq1d 5770 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
12 simp2 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆𝐸)
136, 2, 4tendoid 38787 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
141, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
156, 2, 3ltrn1o 38138 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16153adant2 1130 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
17 f1ococnv2 6743 . . . . . . . . 9 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1918fveq2d 6778 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = (𝑆‘( I ↾ (Base‘𝐾))))
20 f1ococnv2 6743 . . . . . . . 8 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
218, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
2214, 19, 213eqtr4rd 2789 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = (𝑆‘(𝐹𝐹)))
23 simp3 1137 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
242, 3ltrncnv 38160 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
25243adant2 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
262, 3, 4tendospdi1 39034 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐹𝑇)) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
271, 12, 23, 25, 26syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2822, 27eqtrd 2778 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2928coeq2d 5771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))))
30 coass 6169 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
31 coass 6169 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
3229, 30, 313eqtr4g 2803 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)))
3310coeq1d 5770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
342, 3, 4tendocl 38781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
3525, 34syld3an3 1408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
366, 2, 3ltrn1o 38138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
371, 35, 36syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
38 f1of 6716 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
39 fcoi2 6649 . . . 4 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4037, 38, 393syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4132, 33, 403eqtrd 2782 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (𝑆𝐹))
422, 3ltrncnv 38160 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹) ∈ 𝑇)
431, 5, 42syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
446, 2, 3ltrn1o 38138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 43, 44syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6716 . . 3 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi2 6649 . . 3 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4845, 46, 473syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4911, 41, 483eqtr3rd 2787 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  tendospcanN  39037  dihjatcclem4  39435
  Copyright terms: Public domain W3C validator