Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocnv Structured version   Visualization version   GIF version

Theorem tendocnv 41004
Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))

Proof of Theorem tendocnv
StepHypRef Expression
1 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendosp.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 tendosp.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendosp.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
52, 3, 4tendocl 40750 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
6 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
76, 2, 3ltrn1o 40107 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
81, 5, 7syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 f1ococnv1 6878 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
1110coeq1d 5875 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
12 simp2 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆𝐸)
136, 2, 4tendoid 40756 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
141, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
156, 2, 3ltrn1o 40107 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16153adant2 1130 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
17 f1ococnv2 6876 . . . . . . . . 9 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1918fveq2d 6911 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = (𝑆‘( I ↾ (Base‘𝐾))))
20 f1ococnv2 6876 . . . . . . . 8 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
218, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
2214, 19, 213eqtr4rd 2786 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = (𝑆‘(𝐹𝐹)))
23 simp3 1137 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
242, 3ltrncnv 40129 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
25243adant2 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
262, 3, 4tendospdi1 41003 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐹𝑇)) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
271, 12, 23, 25, 26syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2822, 27eqtrd 2775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2928coeq2d 5876 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))))
30 coass 6287 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
31 coass 6287 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
3229, 30, 313eqtr4g 2800 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)))
3310coeq1d 5875 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
342, 3, 4tendocl 40750 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
3525, 34syld3an3 1408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
366, 2, 3ltrn1o 40107 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
371, 35, 36syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
38 f1of 6849 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
39 fcoi2 6784 . . . 4 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4037, 38, 393syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4132, 33, 403eqtrd 2779 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (𝑆𝐹))
422, 3ltrncnv 40129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹) ∈ 𝑇)
431, 5, 42syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
446, 2, 3ltrn1o 40107 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 43, 44syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6849 . . 3 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi2 6784 . . 3 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4845, 46, 473syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4911, 41, 483eqtr3rd 2784 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   I cid 5582  ccnv 5688  cres 5691  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  Basecbs 17245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  TEndoctendo 40735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738
This theorem is referenced by:  tendospcanN  41006  dihjatcclem4  41404
  Copyright terms: Public domain W3C validator