Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendovalco | Structured version Visualization version GIF version |
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendovalco | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2739 | . . . . 5 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | istendo 38753 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
7 | coeq1 5763 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
8 | 7 | fveq2d 6772 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑆‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝑔))) |
9 | fveq2 6768 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
10 | 9 | coeq1d 5767 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔))) |
11 | 8, 10 | eqeq12d 2755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)))) |
12 | coeq2 5764 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
13 | 12 | fveq2d 6772 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑆‘(𝐹 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝐺))) |
14 | fveq2 6768 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑆‘𝑔) = (𝑆‘𝐺)) | |
15 | 14 | coeq2d 5768 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
16 | 13, 15 | eqeq12d 2755 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → ((𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
17 | 11, 16 | rspc2v 3570 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
18 | 17 | com12 32 | . . . . 5 ⊢ (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
19 | 18 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
20 | 6, 19 | syl6bi 252 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))))) |
21 | 20 | 3impia 1115 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
22 | 21 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 class class class wbr 5078 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 lecple 16950 LHypclh 37977 LTrncltrn 38094 trLctrl 38151 TEndoctendo 38745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-tendo 38748 |
This theorem is referenced by: tendoco2 38761 tendococl 38765 tendodi1 38777 tendoicl 38789 cdlemi2 38812 tendospdi1 39013 |
Copyright terms: Public domain | W3C validator |