Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendovalco Structured version   Visualization version   GIF version

Theorem tendovalco 40464
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendovalco (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))

Proof of Theorem tendovalco
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 tendof.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 tendof.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2726 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5istendo 40459 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))))
7 coeq1 5864 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑔) = (𝐹𝑔))
87fveq2d 6905 . . . . . . . 8 (𝑓 = 𝐹 → (𝑆‘(𝑓𝑔)) = (𝑆‘(𝐹𝑔)))
9 fveq2 6901 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑆𝑓) = (𝑆𝐹))
109coeq1d 5868 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑆𝑓) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)))
118, 10eqeq12d 2742 . . . . . . 7 (𝑓 = 𝐹 → ((𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔))))
12 coeq2 5865 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐹𝑔) = (𝐹𝐺))
1312fveq2d 6905 . . . . . . . 8 (𝑔 = 𝐺 → (𝑆‘(𝐹𝑔)) = (𝑆‘(𝐹𝐺)))
14 fveq2 6901 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑆𝑔) = (𝑆𝐺))
1514coeq2d 5869 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑆𝐹) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
1613, 15eqeq12d 2742 . . . . . . 7 (𝑔 = 𝐺 → ((𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1711, 16rspc2v 3619 . . . . . 6 ((𝐹𝑇𝐺𝑇) → (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1817com12 32 . . . . 5 (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
19183ad2ant2 1131 . . . 4 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
206, 19biimtrdi 252 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))))
21203impia 1114 . 2 ((𝐾𝑉𝑊𝐻𝑆𝐸) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
2221imp 405 1 (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5153  ccom 5686  wf 6550  cfv 6554  lecple 17273  LHypclh 39683  LTrncltrn 39800  trLctrl 39857  TEndoctendo 40451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-tendo 40454
This theorem is referenced by:  tendoco2  40467  tendococl  40471  tendodi1  40483  tendoicl  40495  cdlemi2  40518  tendospdi1  40719
  Copyright terms: Public domain W3C validator