![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendovalco | Structured version Visualization version GIF version |
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendovalco | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2799 | . . . . 5 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | istendo 36781 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
7 | coeq1 5483 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
8 | 7 | fveq2d 6415 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑆‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝑔))) |
9 | fveq2 6411 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
10 | 9 | coeq1d 5487 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔))) |
11 | 8, 10 | eqeq12d 2814 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)))) |
12 | coeq2 5484 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
13 | 12 | fveq2d 6415 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑆‘(𝐹 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝐺))) |
14 | fveq2 6411 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑆‘𝑔) = (𝑆‘𝐺)) | |
15 | 14 | coeq2d 5488 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
16 | 13, 15 | eqeq12d 2814 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → ((𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
17 | 11, 16 | rspc2v 3510 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
18 | 17 | com12 32 | . . . . 5 ⊢ (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
19 | 18 | 3ad2ant2 1165 | . . . 4 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
20 | 6, 19 | syl6bi 245 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))))) |
21 | 20 | 3impia 1146 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
22 | 21 | imp 396 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 class class class wbr 4843 ∘ ccom 5316 ⟶wf 6097 ‘cfv 6101 lecple 16274 LHypclh 36005 LTrncltrn 36122 trLctrl 36179 TEndoctendo 36773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-tendo 36776 |
This theorem is referenced by: tendoco2 36789 tendococl 36793 tendodi1 36805 tendoicl 36817 cdlemi2 36840 tendospdi1 37041 |
Copyright terms: Public domain | W3C validator |