Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendovalco Structured version   Visualization version   GIF version

Theorem tendovalco 40874
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendovalco (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))

Proof of Theorem tendovalco
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 tendof.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 tendof.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2731 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendof.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5istendo 40869 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓))))
7 coeq1 5796 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑔) = (𝐹𝑔))
87fveq2d 6826 . . . . . . . 8 (𝑓 = 𝐹 → (𝑆‘(𝑓𝑔)) = (𝑆‘(𝐹𝑔)))
9 fveq2 6822 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑆𝑓) = (𝑆𝐹))
109coeq1d 5800 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑆𝑓) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)))
118, 10eqeq12d 2747 . . . . . . 7 (𝑓 = 𝐹 → ((𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔))))
12 coeq2 5797 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐹𝑔) = (𝐹𝐺))
1312fveq2d 6826 . . . . . . . 8 (𝑔 = 𝐺 → (𝑆‘(𝐹𝑔)) = (𝑆‘(𝐹𝐺)))
14 fveq2 6822 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑆𝑔) = (𝑆𝐺))
1514coeq2d 5801 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑆𝐹) ∘ (𝑆𝑔)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
1613, 15eqeq12d 2747 . . . . . . 7 (𝑔 = 𝐺 → ((𝑆‘(𝐹𝑔)) = ((𝑆𝐹) ∘ (𝑆𝑔)) ↔ (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1711, 16rspc2v 3583 . . . . . 6 ((𝐹𝑇𝐺𝑇) → (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
1817com12 32 . . . . 5 (∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
19183ad2ant2 1134 . . . 4 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
206, 19biimtrdi 253 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))))
21203impia 1117 . 2 ((𝐾𝑉𝑊𝐻𝑆𝐸) → ((𝐹𝑇𝐺𝑇) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺))))
2221imp 406 1 (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  ccom 5618  wf 6477  cfv 6481  lecple 17168  LHypclh 40093  LTrncltrn 40210  trLctrl 40267  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-tendo 40864
This theorem is referenced by:  tendoco2  40877  tendococl  40881  tendodi1  40893  tendoicl  40905  cdlemi2  40928  tendospdi1  41129
  Copyright terms: Public domain W3C validator