| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendovalco | Structured version Visualization version GIF version | ||
| Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendovalco | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 5 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | istendo 40754 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
| 7 | coeq1 5821 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
| 8 | 7 | fveq2d 6862 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑆‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝑔))) |
| 9 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
| 10 | 9 | coeq1d 5825 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔))) |
| 11 | 8, 10 | eqeq12d 2745 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)))) |
| 12 | coeq2 5822 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
| 13 | 12 | fveq2d 6862 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑆‘(𝐹 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝐺))) |
| 14 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑆‘𝑔) = (𝑆‘𝐺)) | |
| 15 | 14 | coeq2d 5826 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
| 16 | 13, 15 | eqeq12d 2745 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → ((𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
| 17 | 11, 16 | rspc2v 3599 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
| 18 | 17 | com12 32 | . . . . 5 ⊢ (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
| 19 | 18 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
| 20 | 6, 19 | biimtrdi 253 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))))) |
| 21 | 20 | 3impia 1117 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
| 22 | 21 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 lecple 17227 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-tendo 40749 |
| This theorem is referenced by: tendoco2 40762 tendococl 40766 tendodi1 40778 tendoicl 40790 cdlemi2 40813 tendospdi1 41014 |
| Copyright terms: Public domain | W3C validator |