Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendovalco | Structured version Visualization version GIF version |
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendovalco | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | istendo 38701 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
7 | coeq1 5755 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
8 | 7 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑆‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝑔))) |
9 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
10 | 9 | coeq1d 5759 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔))) |
11 | 8, 10 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)))) |
12 | coeq2 5756 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
13 | 12 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑆‘(𝐹 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝐺))) |
14 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑆‘𝑔) = (𝑆‘𝐺)) | |
15 | 14 | coeq2d 5760 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
16 | 13, 15 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → ((𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
17 | 11, 16 | rspc2v 3562 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
18 | 17 | com12 32 | . . . . 5 ⊢ (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
19 | 18 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
20 | 6, 19 | syl6bi 252 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))))) |
21 | 20 | 3impia 1115 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
22 | 21 | imp 406 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 lecple 16895 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 TEndoctendo 38693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-tendo 38696 |
This theorem is referenced by: tendoco2 38709 tendococl 38713 tendodi1 38725 tendoicl 38737 cdlemi2 38760 tendospdi1 38961 |
Copyright terms: Public domain | W3C validator |