![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendovalco | Structured version Visualization version GIF version |
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendovalco | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendof.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendof.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2726 | . . . . 5 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendof.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | istendo 40459 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)))) |
7 | coeq1 5864 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
8 | 7 | fveq2d 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑆‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝑔))) |
9 | fveq2 6901 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑆‘𝑓) = (𝑆‘𝐹)) | |
10 | 9 | coeq1d 5868 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔))) |
11 | 8, 10 | eqeq12d 2742 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)))) |
12 | coeq2 5865 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
13 | 12 | fveq2d 6905 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑆‘(𝐹 ∘ 𝑔)) = (𝑆‘(𝐹 ∘ 𝐺))) |
14 | fveq2 6901 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑆‘𝑔) = (𝑆‘𝐺)) | |
15 | 14 | coeq2d 5869 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
16 | 13, 15 | eqeq12d 2742 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → ((𝑆‘(𝐹 ∘ 𝑔)) = ((𝑆‘𝐹) ∘ (𝑆‘𝑔)) ↔ (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
17 | 11, 16 | rspc2v 3619 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
18 | 17 | com12 32 | . . . . 5 ⊢ (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
19 | 18 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘(𝑆‘𝑓))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑓)) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
20 | 6, 19 | biimtrdi 252 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))))) |
21 | 20 | 3impia 1114 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) → ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺)))) |
22 | 21 | imp 405 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 class class class wbr 5153 ∘ ccom 5686 ⟶wf 6550 ‘cfv 6554 lecple 17273 LHypclh 39683 LTrncltrn 39800 trLctrl 39857 TEndoctendo 40451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-tendo 40454 |
This theorem is referenced by: tendoco2 40467 tendococl 40471 tendodi1 40483 tendoicl 40495 cdlemi2 40518 tendospdi1 40719 |
Copyright terms: Public domain | W3C validator |