| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglowdim2l | Structured version Visualization version GIF version | ||
| Description: Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 30-May-2019.) |
| Ref | Expression |
|---|---|
| tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglowdim2l.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| tglowdim2l | ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglineintmo.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglowdim2l.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | 1, 2, 3, 4, 5 | axtglowdim2 28448 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐))) |
| 7 | tglineintmo.l | . . . . . . 7 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | 4 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
| 9 | simpllr 775 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
| 10 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → 𝑏 ∈ 𝑃) | |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ 𝑃) | |
| 12 | 1, 7, 3, 8, 9, 10, 11 | tgcolg 28532 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → ((𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐)))) |
| 13 | 12 | notbid 318 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) ∧ 𝑐 ∈ 𝑃) → (¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐)))) |
| 14 | 13 | rexbidva 3154 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → (∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐)))) |
| 15 | 14 | rexbidva 3154 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐)))) |
| 16 | 15 | rexbidva 3154 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐼𝑏) ∨ 𝑎 ∈ (𝑐𝐼𝑏) ∨ 𝑏 ∈ (𝑎𝐼𝑐)))) |
| 17 | 6, 16 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 2c2 12180 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 DimTarskiG≥cstrkgld 28409 Itvcitv 28411 LineGclng 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-trkgc 28426 df-trkgcb 28428 df-trkgld 28430 df-trkg 28431 |
| This theorem is referenced by: tglowdim2ln 28629 |
| Copyright terms: Public domain | W3C validator |