Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpbase Structured version   Visualization version   GIF version

Theorem tgrpbase 40259
Description: The base set of the translation group is the set of all translations (for a fiducial co-atom π‘Š). (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHypβ€˜πΎ)
tgrpset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tgrpset.g 𝐺 = ((TGrpβ€˜πΎ)β€˜π‘Š)
tgrp.c 𝐢 = (Baseβ€˜πΊ)
Assertion
Ref Expression
tgrpbase ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐢 = 𝑇)

Proof of Theorem tgrpbase
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 tgrpset.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 tgrpset.g . . . 4 𝐺 = ((TGrpβ€˜πΎ)β€˜π‘Š)
41, 2, 3tgrpset 40258 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐺 = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
54fveq2d 6906 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜πΊ) = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩}))
6 tgrp.c . 2 𝐢 = (Baseβ€˜πΊ)
72fvexi 6916 . . 3 𝑇 ∈ V
8 eqid 2728 . . . 4 {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩} = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩}
98grpbase 17276 . . 3 (𝑇 ∈ V β†’ 𝑇 = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩}))
107, 9ax-mp 5 . 2 𝑇 = (Baseβ€˜{⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
115, 6, 103eqtr4g 2793 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐢 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3473  {cpr 4634  βŸ¨cop 4638   ∘ ccom 5686  β€˜cfv 6553   ∈ cmpo 7428  ndxcnx 17171  Basecbs 17189  +gcplusg 17242  LHypclh 39497  LTrncltrn 39614  TGrpctgrp 40255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-struct 17125  df-slot 17160  df-ndx 17172  df-base 17190  df-plusg 17255  df-tgrp 40256
This theorem is referenced by:  tgrpgrplem  40262  tgrpabl  40264
  Copyright terms: Public domain W3C validator